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Abstract

In this paper, we show that for each k € Z*,p > 4, there exists a solution operator 7}
to the 0 problem on the Hartogs triangle that maintains the same W*? regularity as that of
the data. According to a Kerzman-type example, this operator provides solutions with the
optimal Sobolev regularity.

1 Introduction

The Hartogs triangle
H = {(21,2’2) € C2 : ’Zl‘ < |22’ < 1}

is a pseudoconvex domain with non-Lipschitz boundary. It serves as a model counterexample for
many questions in several complex variables. For instance, it does not admit a Stein neighborhood
basis or a bounded plurisubharmonic exhaustion function. Meanwhile, Chaumat and Chollet
showed in [2] that the corresponding O problem on H is not globally regular in the sense that
there is a smooth d-closed (0, 1)-form f on H, such that du = f has no smooth solution on H.
Interestingly, at each Hoélder level the O equation does admit Holder solutions with the same
Holder regularity as that of the data. For more properties on H please refer to a survey [15] of
Shaw. On the other hand, the study of Sobolev regularity was initiated by Chakrabarti and Shaw
in [5], where they carried out a weighted L?-Sobolev estimate for the canonical solution on H. See
also a recent work [18] of Yuan and the second author on weighted LP-Sobolev estimates of 9 on
general quotient domains.

The goal of this paper is to study the optimal J regularity on H at each (unweighted) Sobolev
level. Recently, the optimal L? regularity of O on H was obtained by the second author in [19].
The following is our main theorem concerning the W*? regularity, k > 1. As demonstrated by a
Kerzman-type Example 2 (in Section 4), it gives the optimal W*P regularity in the sense that for
any € > 0, there exists a W*? datum which has no W¥*»*¢ solution to 0 on H.

Theorem 1.1. For each k € Z7F,4 < p < oo, there exists a solution operator Ty, such that for any
O-closed (0,1) form £ € WrP(H), Tpf € WHP(H) and solves Ou = £ on H. Moreover, there exists
a constant C' dependent only on k and p such that

| Teft e < ClIE|lwrre -
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The general idea of the proof is as follows. According to a heuristic procedure to treat the
O problem on the Hartogs triangle H, one first uses the biholomorphism between the punctured
bidisc and H to pull back the data and solve 0 on the punctured bidisc, and then pushes the
solutions forward onto the Hartogs triangle. As a consequence of this, the corresponding Sobolev
regularity of the d problem requires a weighted Sobolev regularity on product domains due to
the presence of the nontrivial Jacobian of the biholomorphism. Based upon our recent weighted
Sobolev result [14] about Cauchy-type integrals, we first obtain the following Sobolev regularity
for O on product domains with respect to weights in some refined Muckenhoupt space A% (see
Definition 2.1).

Theorem 1.2. Let Q@ = Dy x ---Dy,n > 2, where each D; is a bounded domain in C with
C*Y boundary. There exists a solution operator T such that for any O-closed (0,q) form f €
Whn=20(Q ),k € Z*,1 < p < oo, u € Ay, Tf € WHP(Q, 1) and solves Ou = £ on Q. Moreover,
there exists a constant C' dependent only on Q, k,p and the Ay constant of p such that

I Tt lwer@pw < CllEllwrtn—200pu)-

As shown by Example 1 (in Section 3), Theorem 1.2 gives the optimal Sobolev regularity of
solutions on product domains with dimension n = 2. Jin and Yuan obtained in [8] a similar
Sobolev estimate for polydiscs in the case when 4 = 1 and ¢ = 1. It is also worth pointing out
that the operator T' considered in Theorem 1.2 fails to maintain the LP (where k = 0) regularity
in general. See [3] of Chen and McNeal for a d-closed (0,1) form f in LP(A2) such that that Tf
fails to lie in LP(A?),p < 2. Instead, [19] made use of the canonical solution operator to provide
an optimal weighted L? regularity for & on product domains in C".

Theorem 1.2 readily gives a semi-weighted LP-Sobolev estimate below for a (fixed) solution
operator to 0 on H,p > 2.

Corollary 1.3. There exists a solution operator T such that for any O-closed (0,1) form f €
WFrP(H), k € ZT,2 < p < oo, Tf € W*P(H, |2|*") and solves Ou = £ on H. Moreover, there
exists a constant C' dependent only on k and p such that

ITE wror g apry < CllEllwes -

The estimate in Corollary 1.3 maintains the Sobolev index (k,p), and in particular improves
a result in [18]. We note that the p > 2 assumption in the corollary is due to the fact that the
weight after pulling the data on H back to the bidisc lies in A7 only when p > 2, where Theorem
1.2 can be applied. Unfortunately, the solution operator 7 here subjects to some quantified loss
in the exponent of the weight at each Sobolev level. Although this weight loss is not unexpected
due to the global irregularity of @ on H, 7 does not provide an optimal Sobolev regularity.

In order to obtain the optimal Sobolev regularity for 0 on H, one needs to further adjust the
solution operator 7 in Corollary 1.3 accordingly at different Sobolev levels. In fact, we apply to
T a surgical procedure — truncation by Taylor polynormials: one on the data, and another on the
0 solution on the punctured bidisc. The idea was initially introduced by Ma and Michel in [11]
to treat the Holder regularity. In the Sobolev category when p > 4, this procedure at order k — 1
is meaningful and in the strong (continuous) sense due to the Sobolev embedding theorem. Note
that the top k-th order derivatives are still in the weak (distributional) sense where we need to
use discretion. After a careful inspection of the post-surgical regularity on the pull-back of the
data and push-forward of the solutions on the punctured bidisc, we utilize a weighted Hardy-type
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inequality to obtain a sequence of refined Sobolev estimates. These estimates eventually allow
the weight loss from the singularity at (0,0) to be precisely (and fortunately) compensated by the
weight gain from the truncation, so that the truncated solution enjoys the (unweighted) Sobolev
regularity in Theorem 1.1. Throughout our proof, the assumptions & > 1,p > 4 are crucial and
repeatedly used. It is not clear whether the theorem still holds if p < 4.

The organization of the paper is as follows. In Section 2, we give notations and preliminaries
that are needed in the paper. In Section 3, we prove Theorem 1.2 for the weighted Sobolev
estimate on product domains, from which Corollary 1.3 follows. Section 4 is devoted to the proof
of the main Theorem 1.1 for the Sobolev estimate on the Hartogs triangle.

2 Notations and preliminaries

2.1 Weighted Sobolev spaces

Denote by |S| the Lebesgue measure of a subset S in C", and dV; the volume integral element in
the complex z; variable. For z = (21, -+ ,2,) € C", let 2; = (21, ,2j_1,2j4+1," "+ ,2n) € C"71,
where the j-th component of z is skipped. Our weight space under consideration is as follows.

Definition 2.1. Given 1 < p < 0o, a weight ji : C" — [0, 00) is said to be in A% if the Ay constant

= (5 [weiavs) (i [ aorsan,) <

where the supremum is taken over a.e. Z; € C" 1, j=1,...,n, and all discs D C C.

When n = 1, the A} space coincides with the standard Muckenhoupt’s class A,, the collection
of all weights p : C* — [0, 00) satisfying

Aty = (o [ o) (o [ u<z>¢pdvz>p_l <o,

where the supremum is taken over all balls B C C". Clearly, A, C 4,if1 < qg<p < o0. 4,
spaces also satisfy an open-end property: if y € A, for some p > 1, then p € A; for some p < p.
See [16, Chapter V] for more details of the A, class.

When n > 2, Definition 2.1 essentially says that p € Ay if and only if the restriction of u on
any complex one-dimensional slice Z; belongs to A,, with a uniform A, bound independent of Z;.
On the other hand, u € A7 if and only if the d-dilation ps(2) := p(di21,...,0n2,) € Ap with a
uniform A, constant for all 6 = (d1,...,0,) € (RT)" (see [6, pp. 454]). This in particular implies
AZ C Ap. As will be seen in the rest of the paper, the setting of A7 weights allows us to apply the
slicing property of product domains rather effectively.

Let © be a bounded domain in C™. Denote by Z* the set of all positive integers. Given
k € Z* U {0},p > 1, the weighted Sobolev space W*P(Q, ) with respect to a weight u > 0 is
the set of functions on €2 whose weak derivatives up to order k exist and belong to LP(€2, ). The
corresponding weighted W*? norm of a function h € WkP(Q, 1) is

k :
1Pllwes @ = (Z/ﬂ !Vih(Z)!”u(Z)de> < .
=0
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Here V! represents all I-th order weak derivatives of h. When p = 1, WkP(Q, 1) is reduced to
the (unweighted) Sobolev space W*?(Q2). As a direct consequence of the open-end property for A,
and Holder inequality, if p € A,, p > 1, there exists some ¢ > 1 such that W"P(Q, u) € WH(Q).

In the rest of the paper, for each j = 1,...,n, we use V?jh to specify all aj-th order weak
derivatives of h in the complex z;-th direction. For a multi-index a = (ay,...,®,), denote

Ve ...Ve by V2. Then for | € ZT, VL = > laj=t V2. We also represent the a;-th order
derivative of h with respect to the holomorphic z; and anti-holomorphic z; variable by 823." h and
8?]7 h, respectively. When the context is clear, the letter z may be dropped from those differential

operators and we write instead V, V?j , Ve, 8? and 5;” etc.

2.2 Weighted Sobolev estimates on planar domains

Let D be a bounded domain in C with Lipschitz boundary. For p > 1,z € D, define

Th(z) = _—1/ wdé/\d{, for h € LP(D);

C2mi Jp (-2
N S (9 p
Sh(z) := 5 /bDC_ZdC, for h € LP(bD).

Clearly, d¢ A d¢ = 2idV; in the above. T and S satisfy the Cauchy-Green formula below: for any
h e W»(D),p > 1, )
h=Sh+Toh on D

in the sense of distributions.

The following weighted Sobolev regularity of 7" and S is essential in order to carry out the
weighted Sobolev regularity of 9 on product domains. It is worthwhile to note that (2.2) below
fails if £ = 0, where S is not even well-defined.

Theorem 2.2. [1/] Let D C C be a bounded domain with C*' boundary and p € A,,1 < p < o0o.
For k € Z*T U {0}, there exists a constant C' dependent only on D,k, p and A,(u), such that for
all h € W*P(D, 1),

TRl wrsropm) < Cllhllwrs(n,- (2.1)

If in addition k € Z*, then
1Shllwerp,u < Cllllwero,u)- (2.2)

2.3 Product domains and the Hartogs triangle

A subset Q2 C C” is said to be a product domain, if Q@ = D; x --- x D,,, where each D; C
C,7=1,...,n,is a bounded domain in C such that its boundary bD); consists of a finite number
of rectifiable Jordan curves which do not intersect one another. A product domain €2 is always
pseudoconvex, and has Lipschitz boundary if in addition each bD; is Lipschitz, j =1,...,n.

Denote by A the unit disc in C, and by A* := A\ {0} the punctured disc on C. Then
the punctured bidisc A x A* is biholomorphic to the Hartogs triangle H through the map ¢ :
A x A* — H, where

(w1, wy) € A X A" = (21, 22) = Y(w) = (wywe, wy) € H. (2.3)



The inverse ¢ : H — A x A* is given by
(21,22) € H— (w1, ws) = ¢p(2) = (—, 22> e A x A" (2.4)

Note that H is not Lipschtiz near (0, 0).

It is well-known that any domain with Lipschtiz boundary is a uniform domain (see [7] for
the definition). Recently, it was shown in [1, Theorem 2.12] that the Hartogs triangle is also a
uniform domain. Thus according to [9] [4, Theorem 1.1}, both Lipschitz product domains and the
Hartogs triangle satisfy a weighted Sobolev extension property. Namely, let {2 be either a Lipschitz
product domain or the Hartogs triangle. Then for any weight u € A,,1 < p < o0,k € Z*, any
h € WEP(Q, 1) can be extended as an element h in W*?(C", i) such that

1Pllweocnny < Clibllwsr @

for some constant C' dependent only on k, p and the A, constant of p.

For simplicity of notations, throughout the rest of the paper, we shall say the two quantities a
and b satisfy a < b, if a < Cb for some constant C' > 0 dependent only possibly on €2, k, p and the
A constant A () (or Ap(p)).

3 Weighted Sobolev estimates on product domains

Let D; C C, j =1,...,n, be bounded domains with C*! boundary, n > 2,k € Z* U {0}, and let
Q:= D; x--- x D,. Denote by T; and S; the solid and boundary Cauchy integral operators T’
and S acting on functions along the j-th slice of €2, respectively. Namely, for p > 1,2 € Q,

-1 h(z1, ..., 2— TR -
Th(z) = = [ L b G En e E) g e o e ()
2mi Jp, ¢ —z (3.1)
1 h(Zl,...,ijl,C,Zj+1,...,Zn) '
; = — fi LP(b2).
Sih(z) 271 o, = d¢, for h e LP(b2)

Proposition 3.1. Let Q = Dy x --- x D,,, where each D; is a bounded domain in C with C*!
boundary, k € Z+ U{0}. Assume p € A%, 1 < p < oo. Then for any h € WHEP(Q, 1),

”TthW’“vP(Q,u) 5 “h“W’w’(Q,u)- (3.2)

If in addition k € Z*, then
1Sjhllwe-ro@u) < I0llwrr@u- (3.3)

Proof. Without loss of generality, assume j = 1 and n = 2. For any multi-index a = (a1, az) with
la] < K, since 0,17 = id, we can further assume V*T1h = 07"T) (V52h). For a.e. fixed 2o € Do,
p(eyz2) € Ap and V§2h(-, z9) € W P(Dy, u(-, 22)). Making use of (2.1), we have

ay
/ 00T, (V52) (21, 20)P i, 22)dVey S 3 / VLV h (21, 20) P (1, 22)dVe.
Dy '—o /D1
Thus
IV T3kl = /D /D 00T (V) (21, 2)P i1, 20) AV, Vi S NI
2 1
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The boundedness of S7 is proved similarly. Since Sih is holomorphic with respect to the
z, variable, we only consider V*Sih(z) = 07" 51(V52h) with |a| < k — 1. Then V352h(:, z2) €
Wh=e22(Dy) for a.e. 2y € Dy. Noting that k — ay > 1, by (2.2),

a1+1

/ 07151 (V3?h) (21, 22) [P (21, 22)dVz, S Z/ [ViVE2h(z1, 2)[P (21, 22)dVL,
Dy

Here the sum for [ up to oy + 1 is necessary in the case when o = (0,k — 1), due to the absence
of (2.2) at k = 0 there. Hence ||[VSih|rw S [|Rllwrr@,pu)-
m

Remark 3.2. a). The estimate (3.2) is optimal. Indeed, consider h(z, z) = |z|"” P on A x A,
Then h € WES(A x A) for all s < p. However, Tih(z1, 22) = Z1|za|" 7 & WFP(A x A).

b). As a consequence of Theorem 2.2, one also has when k € Zt,1 <p <oo,j=1,...,n,
k k—1
S IViThl@m S DIVl S [Bllwe-rs@u: (3.4)
= 1=0
k
S IV Tkl S Ihllwesm, (3.5)
1=0
and
k k
Z ”Vé'SJ'hHL"(Q»u) S Z ||V§h||LP(Q,u) S [ Allwes - (3.6)
=0 1=0

In the case when =1 and k = 0, an application of the classical complex analysis theory (see [17]
etc.) and Fubini theorem gives for 1 < p < oo,

[Tl r) S 10l 2r (@) (3.7)

These inequalities will be used later.

Given a (0, ¢) form
Z f;l...jqdzj‘l VAR deq S CI(Q),

J1<<Jq

define T}f and S;f to be the action on the corresponding component functions. Namely,

Tf= 3 Dfjegdz A ndz,
1<j1<+<jg<n
ij = Z ij513qd’gjl ARERNA dzjq'

1<j1 <<
Furthermore, define a projection mf to be a (0,q — 1) form with
mf o= Y figeq i A AdE,.
1<k<ja<--<jq<n

In their celebrated work (12, pp. 430], Nijenhuis and Woolf constructed a solution operator of the
0 equation for (0, ¢) forms on product domains.



Theorem 3.3. [12] Let Q= Dy x --- X Dy, where each D; is a bounded domain in C with C*'
boundary, k € Z+. If £ € C1(Q) is a d-closed (0,q) form on Q, then

Tf = T17Tlf + TQSlT('Qf + -+ Tn81 te Snflﬂ-nf (38)

is a solution to Ou = f on Q.

Proof of Theorem 1.2: Given a 0O-closed (0,¢q) form f € W™ P(Q,u),p > 1 (the k = 1 case
in the theorem), we first verify that T'f in (3.8) is a weak solution to du = f on Q. Since
Wn=Lr(Q, u) € Wn=14(Q) for some ¢ > 1, for simplicity we directly assume f € W™= 1P(Q),p > 1.
Following an idea in [13], for each j = 1,...,n, let {DJ(.m) o, be a family of strictly increasing
open subsets of D; such that

a). for m > Ny € N, bDj(m) is CF!, -5 < dist(D](-m),D]C-) <L

b). H;m) :Dj — D(m) is a C! diffeomorphism with lim,, HH ™ _ id||c1(p,) = 0.

Let Q) = D§m) - x D™ be the product of those approximating planar domains. Denote
by T; (m) S(m and T(m the operators defined in (3.1) and (3.8) accordingly, with Q replaced by
Qm), Then Tmf ¢ Whr(Q0™). Adopting the mollifier argument to £ € W"~1?(Q), we obtain
fe e C1(QU™) N Wr=LP(QM) such that

||f6 — f||Wn71,p(Q(m)) —0

as € — 0 and 9f° = 0 on Q™
For each fixed m, T™ f6 € W" L2(Q™) when e is small and

OT™fe = £ in Q™
by Theorem 3.3. Furthermore,
1T — Ty pgqomy S I = Ellwa- o) — 0

as € — 0. In particular, lim,_,o 7" exists a.e. in QU and is equal to Tf € W”_I’p(Q(m))
pointwisely.

Given a testing form ¢ with a compact support K, let my > Ny be such that K C Q(mo=2).
Denote by (-, -)q (and (-, -)qme ) the inner product(s) in L?(Q) (and in L2(Q07)), respectively),
and 0" the formal adjoint of 0. For all m > my, one has

(T, 0 §)yme) = ligé(T(m)fe,é*@mmo) = £%<5T(m)ff,¢>g(mo> = lIn(f*, ¢)qua = (F, Pla-
(3.9)
We further show that B B
(Tf,0"¢)q = lim (TF, 0" @) ymo)- (3.10)
m—0o0

For simplicity, assume ;f contains only one component function f;, so does ¢. We will also drop
various integral measures, which should be clear from the context. For each 7 =1,... n,

<Tj(m)5£m) S 17ij o ¢>Q(m0)

1 fj(gh'" 7Cj7zj+17"' zn)XD(m)(CJ) I
7_<27Ti)j_1 /z‘EK 71] (/C;Engm) e /C"_lebD]('T_n% (Cl — Zl) e (ijl — 2]71) ) a ¢(Z)
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Here x ) is the characteristic function of D](-m) c C.

For ejackl (2,¢;) € K x D;j\ {2 = (j}, after a change of variables, there exists some function
h™ € C(Dy x -+ Dj_1), such that |A"™ — 1|c(p,x-p, ;) — 0 as m — oo and

/ / f](Ch 7Cj72j+17”' 7zn>XD§m)(<j>
¢ebp{™ ¢j—1€bD{™ (G —21) - (G—1 — 2zj—1)

J

/ / f](Ch 7<j72j+17”' 7zn)h(m)(C17"' 7Cj71>XD§m)<<j>
B ¢1€bDy ¢j—1€bD;j_4 (Cl - 21) T (Qj—l - Zj—l) '
Notice that when z € K(C Qm0=2) and (; € bDl(m),m >mg,l=1,...,5 —1,

1 1 1
< 2
G — 2] — dlst((Q(m))C,Q(m‘)‘Q)) = dist((2mo))e, Qmo=2)) =M

Hence

’(T(m)s ™) S(m17TJf 0 P)aome) — (1351 - -+ Sjamf, 5*¢>Q(m0)

(3.11)
ST / b o = £
bDy x--xbDj_, ! L1(Q)
On the other hand,
/ fjh(m)XD(m) _ f]‘
bD1x-xbDj_1 ! L1(Q)
S it g =1
L1(bDyx-- ><bD] 1xDjx+xDp) (3'12)
SIFillzr oD xvD; -1 xDx-wx D) IR = leprxp; o)

_1 m
+ HfjHLp(bDl><---><bDj_1><Dj><---><Dn)V011 v (D;\ D](- ))
_1 m
Sl fillwoey (17 = oy, +vol (D \ DI™)) =0

as m — 0o. Here we used the trace theorem in the third inequality. Combining (3.7), (3.11) and
(3.12) we finally get

i — 0

(TS o St — T8y 854w, 06

Q(mg)

as m — 00. (3.10) is thus proved. Combining (3.9) with (3.10), we deduce that

(Tf,0°¢)o = lim (T"F,0°0) e = (£, S)a.

which verifies Tf as a weak solution to 0 on .

We next prove the weighted Sobolev estimate for the operator 7" defined in (3.8). Since OTf = f,
we can further assume V¥ = 9% for any multi-index o = («ay, ..., a,) with |a| < k. In view of
(3.8) and the fact that 7; being a projection is automatically bounded in W*?(Q, 1), we only



need to estimate [|0°T,,S1 - - - Sp_1h||Lr(q, in terms of ||A|lyrin-2p(q . Write 0TS -+ S, _1h =
(0T ) (O S1) -+ - (001" Sp_1)h. Tf oy, > 1, we apply (3.4) and (3.3) inductively to have

n—1

0T3St - - - Sn—1hll Loy SIO5S1) -+ (9577 Sne1) bl wen 100
SI(952S2) -« - (021 Sne1) bl wron-1+e1+10(0 )
<.

SJH ||WZJ 1 atn— QP(Q,,LL) < ||h||W"+”727p(Q,u)‘

If a,, = 0, then there exists some 1 < j < n — 1, such that a; > 1. Without loss of generality,
assume ag > 1. Then by (3.4), (3.6) and (3.3) inductively,

10° TSy - -+ Snabll Loy SN0 S1) -+ (0,77 Sn1) bl o
SI(85282) -+ (0,71 Sn) Bllwer (o)

n—1
SI(95°S3) -+ (0521 Snm1) el lwer+as 1m0 )
<...

SlPllwren—2r(.p)-

The theorem is thus proved.
[

Similar to an example in [19], the following one shows that the 0 problem does not improve
regularity in weighted Sobolev spaces on product domains. As such the weighted Sobolev regularity
obtained in Theorem 1.2 is optimal when n = 2.

Example 1. For each k € Z+ 1 < p < oo,e >0 and any s € (116,2) \ {1}, consider

f = (2 — )%z, on A x A, 7r < arg(z—1) < g’/T and 1 = |z — 1*®PY. Then u € A,

f ¢ WhP(A x A, p) and is O- closed on A x A. However, there does not exist a solution u €
WhPte(A x A,u) to Ou=f on A\ x A,

Proof. One can directly verify that f € W*P(A x A, ) is 0-closed on A x A and p € A

Suppose there exists some u € WEPTE(A x A, ) satisfying du = f on A x A. Then there
exists some holomorphic function h on A x A, such that u = (zp—1)*"*z;+h € WEPT(A x A, p).
For each (r,z) € U := (0,1) x A C R3, consider

v(r, z) == / u(z1, 22)dzy.
|z1|=r

By Holder inequality, Fubini theorem and the fact that p > 1,

Haf ]E:E(UM /’/ 21,22)6121
\le r

|z2|<1 J0

_— T 2
0
1 27 )
5/ / / |8§2U(T619, 20)|PTedOrdrp(z0)dV.,,
lz2|<1Jo Jo

-/ o PR V. S 0 < 20
z2|<1,|z1|<

+e€

w(z0)dV,,dr

pte

U z22)ld0)  drp(z2)dVi,
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Thus 0% v € LPT(U, p).
On the other hand, by Cauchy’s theorem, for each (r, z9) € U,

e v(r, z) =(k—s)---(1—s) / (22 — 1) °Z1dzy

|z1]=r
2
=k—s)-(1—s5)(z— 1)_8/ —dz =2(k —5) - (1 — s)wr¥i(z — 1),
o1 |=r 21
which is not in LP*“(U, u) by the choice of s > 3. This is a contradiction!

]

~ Making use of Theorem 1.2, one can immediately prove the weighted Sobolev estimate for the
0 problem on H in Corollary 1.3. In comparison to the statement of Theorem 1.1, the solution
operator in Corollary 1.3 is the same for all Sobolev levels.

Proof of Corollary 1.3: For any f = Z?:l fi(2)dz; € WHP(H), making use of the change of vari-
ables formula we have the pull-back

' = wo f1 0 Ydwy + (w1 f1 oY + fo 01)) dis. (3.13)
Moreover, noting by the chain rule
Ow, = W20,,, Oy, = w10, + 0.,
we have {*f € WEP(A x A, |wy|?) with

2

(RS A 522 V(e v @) hesfdVs,
7 (3.14)
2
35 RO [
7j=1 1=0

Since k € Z*,p > 2, by (3.14) one has 1*f to be 0-closed on A x A (see, for instance, [10, pp.
28]). Making use of Theorem 1.2, there exists a solution % € W*P(A x A, |w,|?) solving 0t = 1*f.
Arguing in the same way as in the proof of [19, Theorem 1.2], we know that 7f := @ o ¢ solves
Ou = f. Moreover,

k
Tty = 3 [ 9@ )PV,
=0

(3.15)
Z/ IV 2(0) w2 AV = [l o)
=0 Y AXA
Here we used the chain rule
1 Z1
821 == Z—Qawl, 822 == —Z—gawl + 811,2
and the fact that |z1| < |z3| on H.
Finally, combining (3.14)-(3.15) and Theorem 1.2,
ITElwen )z S lllweeaxa w2 S T a w2z S 11w
[
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4 Optimal Sobolev regularity on the Hartogs triangle

In this section, following an idea of Ma and Michel in [11], we shall adjust the solution operator
provided by Corollary 1.3, so that the new operator cancels the loss in the exponent of the weight.
In detail, given a W*? datum on the Hartogs triangle H, we truncate its (k — 1)-th order Taylor
polynomial at (0,0) and then pull it back to the punctured bidisc A x A*. Upon extension and
solving the 0 problem on the bidisc A x A using Theorem 1.2, we once again truncate the (k—1)-th
order holomorphic Taylor polynomial in the w, variable at wy = 0 from the solution. Both Taylor
polynomials are meaningful when p > 4 due to the Sobolev embedding theorem. Moreover, we can
obtain a refined weighted Sobolev regularity at each operation (Proposition 4.1 and Proposition
4.5) as a consequence of the truncation. Finally, pushing forward this truncated solution to H, we
show it is a solution to 0 on H that maintains the same Sobolev regularity as that of the datum.

Throughout the rest of the paper, z = (21, z2) will serve as the variable on H, and w = (w1, ws)
as the variable on A x A.

4.1 Truncating data on the Hartogs triangle

Given a 0-closed (0, 1) form f € W*P(H), k € Z*, p > 4, recalling H satisfies the Sobolev extension
property, it extends to an element, still denoted by f, in W*?(C?). In particular, by Sobolev
embedding theorem, f € C*1(H) for some o > 0. Denote by Py the (k — 1)-th order Taylor
polynomial operator at (0,0). Namely, if h € C*~! near (0,0), then

k—1 = =
01 92 951952 (0
Prh(z) = Z 21 Z1 22 %2 ( )2?2?251252.

I 81! 85!
li+l2+s1+52=0 120222192

Then Pyif is O-closed on H and thus on A x A (see [11, Lemma 3]). Applying the W*? estimate
of 9 on A x A (i.e., Theorem 1.2 with n = 2 and p = 1), one obtains some u; € W*P(A x A)
satisfying

5uk = Pkf on A X A;

(4.1)
urllwrraxay S IPEllwreaxay S IPrfllor-ram S Ellwes -

Let ¢ be defined in (2.3). We truncate f by Pif, and then pull back the truncated datum by 1)
to obtain ¢*(f — Pxf) on the punctured bidisc.

Denote by Py the (k — 1)-th order Taylor polynomial operator in the complex w, variable at
wy = 0 of C*~1 functions on A x A. Then for any h € WEP(H), k € ZT,p > 4,

Y* (Pxh) = Pay (Y*h) .
In particular,
Pai (¥*(h — Pih)) = 0. (4.2)

The following proposition states that the pull-back 1*(f — Pif) of the truncated datum satisfies
a more refined Sobolev estimate than (3.14).

Proposition 4.1. Let f € W*?(H) be a 0-closed (0,1) form on H, k € Z*,p > 4 and 1 be defined
in (2.3). Let o .
f= fldwl + fgdwg = ¢*<f — Pkf) on A x A*.

11



Then £ extends as a O-closed (0,1) form on A x A\, with f € WFP(A x A, Jws]?) and
Pyif = 0. (4.3)
Moreover, fort,s € Zt U{0},t + s <k,

H|w| k-l—svt Vs f'

w2

S [Ellwrer ). (4.4)

Lr(AxA |wal?) ™

In order to prove Proposition 4.1, we need to establish a crucial weighted Hardy-type inequality
on C. We shall adopt the same notation Py, for the (k — 1)-th order Taylor polynomial operator
at 0 on C*~! functions near 0 € C.

Lemma 4.2. For any h € Wk?(C, |w|?),k € Z*,p > 4 with P,h =0, and j =0, ..., k,
/\Vﬂh )PPt rqy, </yvk w)PlwPdV.

Proof. Since the j = k case is trivial, we assume j < k—1. We shall show that for h € W'P(C, |w|?)
with Ph=0,1=1,... k

/C |h(w) [P lw>~"PdV,, < /C |V wh(w)[Plw]>~HPaV,. (4.5)
If so, replacing [ and h by k — j and V7 h in (4.5), respectively, then
19 pp- v, < [ 19 Py,
A standard induction on j will complete the proof of the lemma.

To show (4.5), first apply the Stokes’ theorem to |h(w)[?|w|?> Pwdw on Ar\ A, 0 < € < R < 00
to get

1
= | (w)[P|w|*~ ”’wdw— — w) [P w[*~Podw
21

_ / 5, (\h(w)|p|w|2’lp’u‘)) v,

_<2_l_p> / (B P2V, + / B (|h(w)[?) (w2 @dV,.
2 ARp\Ac AR\Ac

Since )
1 1 [ .
— |h(w)[P|w]* Piwdw = —/ |h(Re)PR*Pdp > 0,
21 bAR 2 0
one further has
[ _
(Ep - 2) [ mwpppav, < —/ WPl Podot [ Bu(Hw)P) [of eV
ANV AR\
(4.6)
We claim that
im e3P P —
lim /ms (h(w)[Pdory, = 0, (4.7)
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which is equivalent to

lim
e—0

/ ]h(w)]p|w|2lpwdw’ = 0.
bA

Indeed, let ¢ be the dual of p, i.e., %—i—% = 1. For a.e. w € bA and 0 < § < €, applying

Fubini theorem in polar coordinates, one can see h(tw) € W"P((4,¢)) as a function of t. By the
fundamental theorem of calculus, we have

h(ew) = h(ow) + /; %h(tw}dt.

Letting 6 — 0 in the above, we have
|h(ew)| < / |Vh(tw)|dt.
0
An induction process further gives

h(ew)|P <

€ t1 ti—1 b
/ / e / IV h(tyw)|dty - - - dtadt
0 0 0
<

€ € p
. / |V h(tyw)|dt; - - - dtadt,
0 0

€ . . p
<el=p / IV h(tw)|tr -t rdt (4.8)
0
ge”—l)p/ |V h(tw)[P3dt (/ tith)) '
0 0
<elrt / |V h(tw)[PE3dt.
0
Here we used the fact that —% > —1 when p > 4 in the last inequality. Note that
c / Ih(ew)Pdo, — / () [Pdo,.
bA bA.
Multiplying both sides of (4.8) by €*~% and integrating over bA, one has
et / |h(w)|Pdo, < / / |V h(tw)|Pt3do,dt
bA.
/ / |V R(w)[P|w|*do,dt
bAy
g/ IV h(w)|P|w|*dV,, — 0
Ae
as € — 0. The claim (4.7) is thus proved.
Pass € — 0 and R — 0o in (4.6), and then make use of (4.7). Since £ —2 > 0, we further infer

/|h(w)|p|w|2_lpde5/|th(w)||h(w)|p_1|w|3—lpde
c C

= [ Vbl )l v,
Cc

1 1_1
< ( / |vwh<w>\f’|w|2—“—”pde) ( / |h<w>|ﬁ|w|2—lpde) |
C C
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(4.5) follows by dividing both sides by ( \h(w)\ple_l”de)l_E and then taking the p-th power.

]

Corollary 4.3. Let D be a umform domain in C and 0 € D. Then for any h € W*P(D, |w|?),k €

ZF,p >4 with Pth =0, and j =0,...,k,

/|V3h VP2~ =gy, </ IVE () P|wl2dV.

Proof. Given h satisfying the assumption of the corollary, according to [4, Theorem 1.2], one can

extend A to be an element h € W#*?(C, |w|?), such that
[ osh)rwbav, 5 [ 95k,
C D
Obviously Peh = 0. Hence making use of Lemma 4.2 to h, we have

/ [Vih()PloP~ vy, < / V() PP~ ¢rav,
D

S [ VRGP Ry, [ [FhhPlefav,

]

Remark 4.4. Recall that any domain with Lipschitz boundary is a uniform domain. As a direct
consequence of Corollary 4.3, whenever h € WHFP(A, |w|?),p > 4 with Pyh = 0, then w™*h €

LP(A, Jw]?).

As shown in the proof of Lemma 4.2 (and thus Corollary 4.3), the assumption p > 4 is essential
and can not be dropped. Now we are ready to prove Proposition 4.1 making use of Corollary 4.3.

Proof of Proposition 4.1: The 0-closedness of ¥*f on A x A was checked in Corollary 1.3. Thus

f is O-closed on A x A, and by (3.13),

fi = 0" (fr = Pefr), fo= @10 (fr = Pefr) + 0" (fo = Pifo).
(4.3) follows from the above (4.9) and (4.2).
Next we prove (4.4). For ly,ly € ZT U {0} with [; + I = ¢,
83181131 <¢*fj) = wz wz P (8?13i21f3) , J=12
Observing that
Ve (Pefj) = Pit (V2 i) -
we get from (4.9) that

w2

H‘w| k+svt VS f-

LP(AX A, |wa]?)

<ZH‘U}’ k+svs vt ( *<f]'_Pkfj))HLP(AXA,|w2|2)

’SZ Z H|w2‘_k+sva2( 2w2w ( i1fj_,Pk—t (vilfj)))HLp(AxAsz\z)

J=1 l1+la=t

’S Z Z |||w2|_k+t+lvivz (d}* (v;fﬂ — Prt (v;fJ))) HLP(AXA,\wgP) ’

1<j<20<i<s

14
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Thus we only need to estimate |||wo| * V! (¢* (VL f; — Puee (VL. 15))) HLP(AX&'leQ) 0<I<
s.
For each fixed w; € A, let

b, = (Ch (V;fj — Prt (Vil'fj)) (wl’ )
Then Py_4h,, = 0 by (4.2). Applying Corollary 4.3 to h,, on A, we have for 0 < (< s) <k —t,
s 415, (07 (V2 £ = Pt (V

) ||LP(A><A"IU2|

< [ [ a9, 0 (V- P (TR ) o) P Ve,
/ / fun? [V Py (V1)) (wr )| dViydVi.

On the other hand, note that for any function h € W*=tP(H), I, + I, = k — t,

1
a1 qla _ —m1,, m2 ;% (Qmi Jli—m1 Qma Qlo—mo
8w28w2w h = E E le,mz,llhwl Wy w (an aZ2 aZl aZZ h)

m1=0 mo=0

for some constants Ci,, m,.,.1, dependent only on my, mo,l; and ly. Thus
\V’H( (VL F = Pret (V2 1))

Vtervk t— mf]) —* (Vzvlgt*m (’Pkft (vilfj)))’

§Z|w Vtervk t— mfj)}
Here we used in the last equality the fact that W+~ (Pk_t (Vil f])) = 0. Hence by a change of

variables (4.10) is further estimated as follows.

IHw TV (0 (Vs = Pt (VI ooy

F(VEmE ) (Wi ws)|” dVi,dVi,

SW (V’z“fj)HLp(Am,\W) SIVES e < 1€ b -

The proof of (4.4) is complete. That £ € W*?(A x A, |w,|?) is a direct consequence of (4.4).
[

4.2 Truncating solutions on the bidisc

Given f in Proposition 4.1, let u* be the solution to du* = f on A x A obtained in Theorem 1.2
with
™ [[wkw (A jws2) S ||f||wkp (AXA,wsl?)- (4.11)
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Consider

ﬂ(wth) ZZU*(wl,IUQ) - ~2 kU*(w1,w2)
k—
1 (4.12)
w17w2 E_O l_ wla())? (wlaw2) S A X Au

where 752,;C is the (k — 1)-th order holomorphic Taylor polynomial operator in the wy variable at
wy = 0. @ is well defined, due to the facts that for each fixed w; € A, | < k —1, 8&211* (wy,-) €
WHP(A, |wel?), and when p > 4,

WIP(A, Jwq|*) € WH(A) C C(A) (4.13)

for some ¢ > 2, and a = 1— %. Here the last inclusion Wh4(A) € C*(A) is the Sobolev embedding

theorem; the inclusion W1P(A, |ws|?) € W4(A) can be seen as follows. Choose some 7 € (2, 1)

p’ 2
and let ¢ = pr. Then ¢ > 2 and = < 1. For any h € W"?(A, |w,|?),

1—r
Tde> < 00,

[ ) av, = [ i) sl av < ( / Ih(w)|q|w2|2dv)r< e

and similarly |Vh| € LI(A). The goal of this subsection is to show that @ satisfies the following
refined weighted estimate.

Proposition 4.5. Let @ be defined in (4.12). Then @ € W*P(A x A, |ws|?). Moreover, for each
s,t € ZT UA{0} with s+t < k, we have

H|w2‘7k+8851181802~HLP DX Jwal2) ~ HfHW’”’ (H) -

We begin by first proving @ € W*P(A x A, |wy]?) below. It is worth pointing out that, arguing
similarly as in (4.13), one has when k € Z*,p > 4,

WHEP(A |wa|?) € WHIA) C CF1e(A).
for some ¢ > 2 and a > 0. In particular, for any h € WEP(A x A, |ws|?), k € ZT,p > 4, we have

h(wy,-) € Ck1e(A) for a.e. fixed wy € A,

Lemma 4.6. Let @ be defined in (4.12). For eachl =0,...,k—1, &', u*(w1,0) € WFP(A x A, |w,]?)
with
Haqf@U*(wla 0)HW’€,p(AxA’|w2|2) 5 ||fHW’€vP(H) : (414>

Consequently, @ € WEP(A x A\, |ws|?) satisfying

Paru =0, (4.15)
du="f on AxA (4.16)

and
[llwenaxa w2y S NEllwseg- (4.17)
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Proof. We first show that Y7~ whdl, L, u* (w1, 0) is holomorphic on A x A, from which (4.16) fol-
lows. Clearly, it is holomorphic in the wy variable. For the holomorphy in the w; variable, note
that

O, Ol u* = 0, f1

w1 ¥ wsg

in the weak sense. On the other hand, for fixed w; € A, 9. fi(w,-) € C*(A) for some a > 0 by
(4.13), and C%Qfl(wl,O) =0 by (4.3). Thus 9y, 0., u* € C*(A) with 9,, 0., u*(wy,0) = 0.

Next vve prove (4.14). By the holomorphy of &), u*(w;,0) above, it suffices to estimate
H(’?t o, u*(wy, 0 HLP(AXMW\Z) fort =0,...,kand [ = 0,...,k — 1. Let x be a smooth func-

w1 wg
tion on A such that x = 1 in A% and x = 0 outside A. By (3.8) (or directly verifying
u* =Ty fi + TS fo = Tofo + T1Saf1), we have

0t Bht® =00, 5 (1= x(w2))0, 12) + 04,08, T> (x(un) o) + 00,85 (85,0 )
=1 A+ Ay + As.

For Ag, let h := 85}17—‘1]?1. Since t S k’, by (35) h € Wl’p(A X A, |w2|2), with ||h||W1,p(AXA’Iw2|2) S
|‘f1HW’%P(A><A,|w2|2)- Note that for wy € A,

Aot 0) = 5 [ M) g
b

omi G

Hence

P
qv,, / ws|2dV,
YA

s O sy S [ | I Oldor
A [JbA

|h(w17 w2>| + |vw2h(w17 w2>|de2
AN

p

AV, (4.18)

N h”%ﬂm(Axg,\sz) S A H%/k»P(AxA,Iwz\Q)
SIEI ko -

Here in the second line we used the trace theorem for Wh(A) C LY(9A); in the third line we

used Holder inequality and the fact that |ws|* € A, (or directly that ]wg\fﬁ € LY(A)); in the
fourth line we used Proposition 4.1.
For Ay, by the choice of x, we have

Al(wl,O) _ _L/A (1 _X(C)>afulf2<w1’<)d<—_/\dc,

271 1

with ) ! Clﬁ(f

< 1on A. Thus by Proposition 4.1 and the fact that |ws|* € A, similarly,

[ A (wr, )HLP(AxA|w2| 2) ~ f2 Wi, C dVe

S/
A

~ p
5/ / ‘8fulf2(w1,w2)‘ |w2|2de2de1

v, / o2V,

p

v,

a'Ltul f2<W1, 'UJQ) ‘ de2

(4.19)

<1 sty S I By
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Now we treat A;. With a change of variables, rewrite it as

(¢ +wa) folwr, ¢ + wy)
As(u,0) = — 0%, 8, [ X d¢ A d¢
2 / C wo=0
o (X ) fwn, C )
=5 | ¢ e

wo=0

L (MORWLQ)
= d¢ N dcg.
/ . Endc
Note that x(-) fo(wy,-) € CF12(A) for some o > 0 with Py, (X(~)f2(w1, )) = 0. In particular,

for j =0,...,1, 82 (X(C)fz(wp C))‘ < |¢[F179* near 0. With a repeated application of Stokes’
theorem, we have

Ag(w1,0) = — l_!aful /C X(C)fz(th)dC—/\d(

271 G
U x(QdL, falw, €) -
=5 /. & d¢ A dg.

Since | < k — 1, making use of Proposition 4.1 with s = 0 and the fact that |ws|* € A, again, we

get
42008 0oy S [ ] [ 1eren
A A

< /|w2|(l+1)
A AN
5/ / |w2’—(l+l)p

S H|w2| ) 1fz

p
dVy, / [ws|?dV,
yAN

p

AV,

oL, fa(w, C)‘ dve

8;1 fQ (wl, ’11)2) de2

(4.20)
" lwa2dVi,, dVy,

a’fulfQ(w].) ws)

<
e S I
Combining (4.18)-(4.20), we have the desired inequality (4.14).
(4.17) follows from (4.14) and (4.11). To see (4.15), we shall verify that 0™ &', ii(w;,0) = 0 for

wa Y wa

all ,m € Z+ U {0},1 +m < k — 1. Note that 9™ 9% i(wy,-) € C*(A) for some o > 0 by (4.17).

w2 w2

If m =0, then 8, @(w;,0) = 0 by its definition. If m > 1, since J,,u = f2 by (4.16),

om oL, di(wy,0) = 9oL, folw,0) = 0,

w2 w2

where we used (4.3) in the last equality. Thus (4.15) is proved, and the proof of the lemma is
complete.
O

In order to derive the refined weighted estimate of @ in Proposition 4.5, we also need the
following modified identities/formulas for W*? functions on A with vanishing (k — 1)-th Taylor
polynomials.
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Lemma 4.7. Let h € WFP(A|w|?), k € ZT,p > 4 with Pyh = 0. Then for a.e. w € A\,

o h(¢) oh(¢) -
2riw Fh(w) = | ———d ————>>—d( A dC;
i th) = [ et [ g nde
Th(w) — Pp(Th)(w) = w*T (w™h) (w),
where Py is the (k — 1)-th order holomorphic Taylor polynomial operator at 0.

Proof. For part i), applying the Cauchy-Green formula to w=*h on A\ A, we have for each fixed
w # 0,

A Y ohe)
ariwh() = [ i [ et ¢ —wy e N 42D

We claim that
=0 Jyn, CF(C—w)
Indeed, let g,(¢) := (¢ — w)~th(¢). Since w # 0, g, € W*P(A, |C|?),p > 4 with e sufficiently

small and Pig, = 0. In particular, g, € C*~1(A,) for some o > 0, with |g,(¢)| < [¢]*1+ near
0. Thus

¢ = 0.

lim
e—0

/A C( C w) dC‘ S hme k/Ae |90 (C)|do¢ S li_{lgéa = 0. (4.22)

The claim is proved. Part i) follows from the claim by letting € — 0 in (4.21).
For ii), let x be a smooth function which is 1 near 0, and vanishes outside A A direct

computation gives that
w=0 A

C_w w=0

—2midTh(0) = / X(Q)R(C )dC/\dC

- 0 (x(C + w)h(C + ) (1= x(O)h(C) -
_[C . - +/A 2 G

[ 9 (X(QR(Q)) = (1 = x(O)r(Q) =
—/C—C dCAdC+/A e dC A dC¢

[ x(Qh(C) - (1 = x(O)h(C) .= [ ()
_/C—CQ dg/\dg+/A A ndc = | TRl

Here in the fourth line above we used Stokes’ theorem and a similar argument as in (4.22) (with
k =1 there). Consequently with an induction,

A A d¢

; - [ hQ)
PeTh = — ; Tm/A G dC N dC.

Note that each term in the right hand side of the above is well defined due to Remark 4.4.
Making use of the following elementary identity for the Cauchy kernel:

1 W wk
— = for all ¢ # w nor 0,

(—w 2T —w)

Il
o
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we immediately get

w h(<)

Th(w) — PTh(w) = “omi | T —w)

dC N d¢ = w*T (w™"h), weA.
Lemma 4.8. If h € W*P(A,|w|?),p > 4, then
SOh = OSh + S(w*0h) on A.

Proof. Note that h € W2P(A |w|?) € C*(A) for some o > 0. So both sides of the above equality
are actually in the strong sense. The lemma follows from a direct computation below. For w € A,

2m 10 510 2 9, (h 10 '((_9}1 0 ,—i0
SOh(w) L/ Och(e”)ie de:i/ b (Ae")) +i0ch(e®)e”
0

2mi e —w 270 ej" —w

- 0% 0 (e,-g - w) ()i + /0 ) %iewd@
2L7TZ ) O (ew 1_ w) e ZG)ZGIGdQ i 271” /A %d{
Qim D (C_Lw) h(Q)d¢ + S (w*0h) = dSh(w) + S (w?0h) (w).

]

Proof of Proposition 4.5: In view of Lemma 4.6, we only need to prove the estimate in the propo-
sition when s < k — 1. First consider the case when 0 < t < k — 1. For fixed w; € A,
hy, == 0, u(wy,-) € WHE=SP(A Jws]?), Pr_shw, = 0 by (4.15), and Oy,hw, = O3 f2 We apply
Lemma 4.7, part i) to h,, and obtain

o : 0z
2miwy M08, 1wy, ws) = / i, ¢ d¢ — / f2 dC A dC.

bACkSC ws) CkSC—
Consequently,
1 o3 (Ekfs wl C kts ot 8sf2(w1 C) B
wy M0 08 = at/ ¢ : / w1 ¢ LA N d
) 2mi ( o ¢ — wy C ¢ — ws e
=055 (95, (wh™°0)) + Ty (w; ™00, 05,2 )
= B1 + BQ.
By (3.2) and Proposition 4.1,
—k+sat 9s —k+sat 9s
”BQHLF(AXAJU}QP) S ’ Iz < awlaw2f2> LP(AXA,wa|?) S ‘ awlanfQ LP(AXA|ws|?) < Hf“Wk’p(H)'

For By, if s =0, then By = S, (w59}, @), where w§0!, @ € W'P(A x A, |ws]*) as t <k — 1. Then
(3.3) and Lemma 4.6 give

||B1||LP(A><A,|1U2|2) S HSQ( at ~)||LP AXAJwa|?) ~ Hw2 HWLP(AxA,Isz)

Slallweraxa w2y S NEllwrsm -
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For the case s > 1, since s < k — 1, 95,1 (05 °a) (wy,-) € W2P(A, |ws|?) for fixed wy € A.
Applying Lemma 4.8 to d; ! (w u) (wy,-) and using the fact that 0,,% = f,, we further write

By =0, 0, S, (05" (wh—*11)) + 0, 52( 0305, (k= s)ak i+ a§ 1))

0,55 (08, 05,1 (@5 70)) + (k — 5)S5 (94,05, (wh~*"1@)) + S (1,00 (wh ™+ 7))
Note that 0%, 951 (wha) € WHP(A x A, |wsl?) for | = k — s,k — s+ 1,k — s+ 2. By (3.6),

Proposition 4.1 and (4.17)

HBIHLF(AXAJU&P) ~ Hafvlalsml ( ﬂ) HWl PAXA,|wa|2) + ||83~501a18021 ( 05t )le PAXA,Jwal?)

_i_‘at as 1( —k—s+2 >H
w1 - w2 f WLp(AxX A ws]2)

S|l wrraxajws?) +HfH

wercaen oy S ks
Finally, we treat the case when ¢ = k (and so s = 0). According to the definition of 4,
i =T fi + SiTofr — T1752,kf1 — 51752,kT2f2
=T fi + 5 <T2 — 752,sz> fo
1+ 5, (s (w5 5))

Here we used the fact that Py, f; = 0 by (4.3) in the second equality, and Lemma 4.7 part ii) in
the third equality for each fixed w; € A. Consequently,

wytok @ =0k Ty (w;k f1> T (af;l S, <w;k ﬁ)) = O + .
For C4, by (3.4) and Proposition 4.1 (with s = 0 there),

?r
,_.

S [Ellwer @

—kj
HClnLP(AXA,\wQIQ)’S' Hw Vi f2 LP(AXA|wa)?) ™

J

Il
=)

For Cy, by (3.4) (with k& = 1 there), (3.6) and Proposition 4.1 (with s = 0 there).

1ol puniy S |01 (w32 S IEllwece

LP(AXA,|Jwz|?) LP(AXAJwa|?) ™

The proof of the proposition is thus complete.

4.3 Proof of the main theorem

Proof of Theorem 1.1: Let Tif := ¢*i + ug on H, where @ is defined in (4.12), and wuy, satisfies
(4.1). Then OTif = f on H. To show the desired estimate for ||7uf|yr.eam), since the anti-
holomorphic derivatives of T.f are shifted to that of f, we only need to estimate H@ll o (¢*a) || Lo (5’

2129
li,lo € ZT U{0},1; + I < k. Note that

0L02 (¢ i) = Y Clpeszt 2T (0,00,0) (Zl,zQ)

<2
s+Ht<li1+l2,t>0
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for some constants Cj, ;,+s dependent on Iy, 1y, t, s, and |z;| < |22] on H. Then by a change of
variables,

Haillalzz (QS*Q)HLZ)(H) f§ Z |||w2|_ll_l2+safulai)2a(wlaw2)HLp(AXA7|w2|2)
s+t<ly+l2,t>1

<3 sl 00, 05, (w,

w1 w2 >HLP(A><A,|w2\2) ’
s+t<k

The rest of the proof follows from Proposition 4.5.
[

The following Kerzman-type example demonstrates that the d problem on H with W*? data
in general does not expect solutions in W*P*¢, ¢ > 0, which verifies the optimality of Theorem
1.1.

Example 2. For eachk € Z" and2 < p < oo, letf = (22—1)k_%d21 onH, ir <arg(z—1) < 3.
Then f € Wk’ﬁ(]}]p forall2 < p < p and is 0-closed on H. However, there does not exist a solution
u € WFP(H) to Qu = f on H.

Proof. Clearly f € W*P(H) for all 2 < p < p and is O-closed on H. Arguing by contradiction,
suppose there exists some u € W#P(H) satisfying Ou = f on H. In particular, since A% X (A
A%) C H, there exists some holomorphic function h on Ay x (AN A%) such that u| Ayx(&\E]) =

(22— 1" o2 + h € Wh(Ay x (A\Ay)).
For each fixed (r, z) € U := (0, 3) x <A \A_%> C R x C, consider

v(r, z9) == / (21, 29)dz.
|z1|=r

Then with a similar argument as in the proof of Example 1, one can see that v € WkP(U). Note
that h(:, z) is holomorphic on A for each fixed 25 € A\A%. Thus for fixed (r, 23) € U, Cauchy’s
theorem gives

v(r, z) = / 29(22 — 1)k7%21d21 = 27r%izy (29 — l)k’%,
lz1]=r

which does not belong to W*?(U). A contradiction!
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