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Abstract

In this paper, we show that for each k ∈ Z+, p > 4, there exists a solution operator Tk
to the ∂̄ problem on the Hartogs triangle that maintains the same W k,p regularity as that of
the data. According to a Kerzman-type example, this operator provides solutions with the
optimal Sobolev regularity.

1 Introduction

The Hartogs triangle
H = {(z1, z2) ∈ C2 : |z1| < |z2| < 1}

is a pseudoconvex domain with non-Lipschitz boundary. It serves as a model counterexample for
many questions in several complex variables. For instance, it does not admit a Stein neighborhood
basis or a bounded plurisubharmonic exhaustion function. Meanwhile, Chaumat and Chollet
showed in [2] that the corresponding ∂̄ problem on H is not globally regular in the sense that
there is a smooth ∂̄-closed (0, 1)-form f on H, such that ∂̄u = f has no smooth solution on H.
Interestingly, at each Hölder level the ∂̄ equation does admit Hölder solutions with the same
Hölder regularity as that of the data. For more properties on H please refer to a survey [15] of
Shaw. On the other hand, the study of Sobolev regularity was initiated by Chakrabarti and Shaw
in [5], where they carried out a weighted L2-Sobolev estimate for the canonical solution on H. See
also a recent work [18] of Yuan and the second author on weighted Lp-Sobolev estimates of ∂̄ on
general quotient domains.

The goal of this paper is to study the optimal ∂̄ regularity on H at each (unweighted) Sobolev
level. Recently, the optimal Lp regularity of ∂̄ on H was obtained by the second author in [19].
The following is our main theorem concerning the W k,p regularity, k ≥ 1. As demonstrated by a
Kerzman-type Example 2 (in Section 4), it gives the optimal W k,p regularity in the sense that for
any ε > 0, there exists a W k,p datum which has no W k,p+ε solution to ∂̄ on H.

Theorem 1.1. For each k ∈ Z+, 4 < p <∞, there exists a solution operator Tk such that for any
∂̄-closed (0, 1) form f ∈ W k,p(H), Tkf ∈ W k,p(H) and solves ∂̄u = f on H. Moreover, there exists
a constant C dependent only on k and p such that

‖Tkf‖Wk,p(H) ≤ C‖f‖Wk,p(H).
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The general idea of the proof is as follows. According to a heuristic procedure to treat the
∂̄ problem on the Hartogs triangle H, one first uses the biholomorphism between the punctured
bidisc and H to pull back the data and solve ∂̄ on the punctured bidisc, and then pushes the
solutions forward onto the Hartogs triangle. As a consequence of this, the corresponding Sobolev
regularity of the ∂̄ problem requires a weighted Sobolev regularity on product domains due to
the presence of the nontrivial Jacobian of the biholomorphism. Based upon our recent weighted
Sobolev result [14] about Cauchy-type integrals, we first obtain the following Sobolev regularity
for ∂̄ on product domains with respect to weights in some refined Muckenhoupt space A∗p (see
Definition 2.1).

Theorem 1.2. Let Ω = D1 × · · ·Dn, n ≥ 2, where each Dj is a bounded domain in C with
Ck,1 boundary. There exists a solution operator T such that for any ∂̄-closed (0, q) form f ∈
W k+n−2,p(Ω, µ), k ∈ Z+, 1 < p <∞, µ ∈ A∗p, T f ∈ W k,p(Ω, µ) and solves ∂̄u = f on Ω. Moreover,
there exists a constant C dependent only on Ω, k, p and the A∗p constant of µ such that

‖T f‖Wk,p(Ω,µ) ≤ C‖f‖Wk+n−2,p(Ω,µ).

As shown by Example 1 (in Section 3), Theorem 1.2 gives the optimal Sobolev regularity of
solutions on product domains with dimension n = 2. Jin and Yuan obtained in [8] a similar
Sobolev estimate for polydiscs in the case when µ ≡ 1 and q = 1. It is also worth pointing out
that the operator T considered in Theorem 1.2 fails to maintain the Lp (where k = 0) regularity
in general. See [3] of Chen and McNeal for a ∂̄-closed (0,1) form f in Lp(42) such that that T f
fails to lie in Lp(42), p < 2. Instead, [19] made use of the canonical solution operator to provide
an optimal weighted Lp regularity for ∂̄ on product domains in Cn.

Theorem 1.2 readily gives a semi-weighted Lp-Sobolev estimate below for a (fixed) solution
operator to ∂̄ on H, p > 2.

Corollary 1.3. There exists a solution operator T such that for any ∂̄-closed (0, 1) form f ∈
W k,p(H), k ∈ Z+, 2 < p < ∞, T f ∈ W k,p(H, |z2|kp) and solves ∂̄u = f on H. Moreover, there
exists a constant C dependent only on k and p such that

‖T f‖Wk,p(H,|z2|kp) ≤ C‖f‖Wk,p(H).

The estimate in Corollary 1.3 maintains the Sobolev index (k, p), and in particular improves
a result in [18]. We note that the p > 2 assumption in the corollary is due to the fact that the
weight after pulling the data on H back to the bidisc lies in A∗p only when p > 2, where Theorem
1.2 can be applied. Unfortunately, the solution operator T here subjects to some quantified loss
in the exponent of the weight at each Sobolev level. Although this weight loss is not unexpected
due to the global irregularity of ∂̄ on H, T does not provide an optimal Sobolev regularity.

In order to obtain the optimal Sobolev regularity for ∂̄ on H, one needs to further adjust the
solution operator T in Corollary 1.3 accordingly at different Sobolev levels. In fact, we apply to
T a surgical procedure – truncation by Taylor polynormials: one on the data, and another on the
∂̄ solution on the punctured bidisc. The idea was initially introduced by Ma and Michel in [11]
to treat the Hölder regularity. In the Sobolev category when p > 4, this procedure at order k − 1
is meaningful and in the strong (continuous) sense due to the Sobolev embedding theorem. Note
that the top k-th order derivatives are still in the weak (distributional) sense where we need to
use discretion. After a careful inspection of the post-surgical regularity on the pull-back of the
data and push-forward of the solutions on the punctured bidisc, we utilize a weighted Hardy-type
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inequality to obtain a sequence of refined Sobolev estimates. These estimates eventually allow
the weight loss from the singularity at (0, 0) to be precisely (and fortunately) compensated by the
weight gain from the truncation, so that the truncated solution enjoys the (unweighted) Sobolev
regularity in Theorem 1.1. Throughout our proof, the assumptions k ≥ 1, p > 4 are crucial and
repeatedly used. It is not clear whether the theorem still holds if p ≤ 4.

The organization of the paper is as follows. In Section 2, we give notations and preliminaries
that are needed in the paper. In Section 3, we prove Theorem 1.2 for the weighted Sobolev
estimate on product domains, from which Corollary 1.3 follows. Section 4 is devoted to the proof
of the main Theorem 1.1 for the Sobolev estimate on the Hartogs triangle.

2 Notations and preliminaries

2.1 Weighted Sobolev spaces

Denote by |S| the Lebesgue measure of a subset S in Cn, and dVzj the volume integral element in
the complex zj variable. For z = (z1, · · · , zn) ∈ Cn, let ẑj = (z1, · · · , zj−1, zj+1, · · · , zn) ∈ Cn−1,
where the j-th component of z is skipped. Our weight space under consideration is as follows.

Definition 2.1. Given 1 < p <∞, a weight µ : Cn → [0,∞) is said to be in A∗p if the A∗p constant

A∗p(µ) := sup

(
1

|D|

∫
D

µ(z)dVzj

)(
1

|D|

∫
D

µ(z)
1

1−pdVzj

)p−1

<∞,

where the supremum is taken over a.e. ẑj ∈ Cn−1, j = 1, . . . , n, and all discs D ⊂ C.

When n = 1, the A∗p space coincides with the standard Muckenhoupt’s class Ap, the collection
of all weights µ : Cn → [0,∞) satisfying

Ap(µ) := sup

(
1

|B|

∫
B

µ(z)dVz

)(
1

|B|

∫
B

µ(z)
1

1−pdVz

)p−1

<∞,

where the supremum is taken over all balls B ⊂ Cn. Clearly, Aq ⊂ Ap if 1 < q < p < ∞. Ap
spaces also satisfy an open-end property: if µ ∈ Ap for some p > 1, then µ ∈ Ap̃ for some p̃ < p.
See [16, Chapter V] for more details of the Ap class.

When n ≥ 2, Definition 2.1 essentially says that µ ∈ A∗p if and only if the restriction of µ on
any complex one-dimensional slice ẑj belongs to Ap, with a uniform Ap bound independent of ẑj.
On the other hand, µ ∈ A∗p if and only if the δ-dilation µδ(z) := µ(δ1z1, . . . , δnzn) ∈ Ap with a
uniform Ap constant for all δ = (δ1, . . . , δn) ∈ (R+)n (see [6, pp. 454]). This in particular implies
A∗p ⊂ Ap. As will be seen in the rest of the paper, the setting of A∗p weights allows us to apply the
slicing property of product domains rather effectively.

Let Ω be a bounded domain in Cn. Denote by Z+ the set of all positive integers. Given
k ∈ Z+ ∪ {0}, p ≥ 1, the weighted Sobolev space W k,p(Ω, µ) with respect to a weight µ ≥ 0 is
the set of functions on Ω whose weak derivatives up to order k exist and belong to Lp(Ω, µ). The
corresponding weighted W k,p norm of a function h ∈ W k,p(Ω, µ) is

‖h‖Wk,p(Ω,µ) :=

(
k∑
l=0

∫
Ω

|∇l
zh(z)|pµ(z)dVz

) 1
p

<∞.
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Here ∇l
zh represents all l-th order weak derivatives of h. When µ ≡ 1, W k,p(Ω, µ) is reduced to

the (unweighted) Sobolev space W k,p(Ω). As a direct consequence of the open-end property for Ap
and Hölder inequality, if µ ∈ Ap, p > 1, there exists some q > 1 such that W k,p(Ω, µ) ⊂ W k,q(Ω).

In the rest of the paper, for each j = 1, . . . , n, we use ∇αj
zj h to specify all αj-th order weak

derivatives of h in the complex zj-th direction. For a multi-index α = (α1, . . . , αn), denote
∇α1
z1
· · · ∇αn

zn by ∇α
z . Then for l ∈ Z+, ∇l

z =
∑
|α|=l∇α

z . We also represent the αj-th order

derivative of h with respect to the holomorphic zj and anti-holomorphic z̄j variable by ∂
αj
zj h and

∂̄
αj
zj h, respectively. When the context is clear, the letter z may be dropped from those differential

operators and we write instead ∇l,∇αj
j ,∇α, ∂

αj
j and ∂̄

αj
j etc.

2.2 Weighted Sobolev estimates on planar domains

Let D be a bounded domain in C with Lipschitz boundary. For p > 1, z ∈ D, define

Th(z) :=
−1

2πi

∫
D

h(ζ)

ζ − z
dζ̄ ∧ dζ, for h ∈ Lp(D);

Sh(z) :=
1

2πi

∫
bD

h(ζ)

ζ − z
dζ, for h ∈ Lp(bD).

Clearly, dζ̄ ∧ dζ = 2idVζ in the above. T and S satisfy the Cauchy-Green formula below: for any
h ∈ W 1,p(D), p > 1,

h = Sh+ T ∂̄h on D

in the sense of distributions.
The following weighted Sobolev regularity of T and S is essential in order to carry out the

weighted Sobolev regularity of ∂̄ on product domains. It is worthwhile to note that (2.2) below
fails if k = 0, where S is not even well-defined.

Theorem 2.2. [14] Let D ⊂ C be a bounded domain with Ck,1 boundary and µ ∈ Ap, 1 < p <∞.
For k ∈ Z+ ∪ {0}, there exists a constant C dependent only on D, k, p and Ap(µ), such that for
all h ∈ W k,p(D,µ),

‖Th‖Wk+1,p(D,µ) ≤ C‖h‖Wk,p(D,µ). (2.1)

If in addition k ∈ Z+, then
‖Sh‖Wk,p(D,µ) ≤ C‖h‖Wk,p(D,µ). (2.2)

2.3 Product domains and the Hartogs triangle

A subset Ω ⊂ Cn is said to be a product domain, if Ω = D1 × · · · × Dn, where each Dj ⊂
C, j = 1, . . . , n, is a bounded domain in C such that its boundary bDj consists of a finite number
of rectifiable Jordan curves which do not intersect one another. A product domain Ω is always
pseudoconvex, and has Lipschitz boundary if in addition each bDj is Lipschitz, j = 1, . . . , n.

Denote by 4 the unit disc in C, and by 4∗ := 4 \ {0} the punctured disc on C. Then
the punctured bidisc 4 × 4∗ is biholomorphic to the Hartogs triangle H through the map ψ :
4×4∗ → H, where

(w1, w2) ∈ 4×4∗ 7→ (z1, z2) = ψ(w) = (w1w2, w2) ∈ H. (2.3)
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The inverse φ : H→4×4∗ is given by

(z1, z2) ∈ H 7→ (w1, w2) = φ(z) =

(
z1

z2

, z2

)
∈ 4×4∗. (2.4)

Note that H is not Lipschtiz near (0, 0).
It is well-known that any domain with Lipschtiz boundary is a uniform domain (see [7] for

the definition). Recently, it was shown in [1, Theorem 2.12] that the Hartogs triangle is also a
uniform domain. Thus according to [9] [4, Theorem 1.1], both Lipschitz product domains and the
Hartogs triangle satisfy a weighted Sobolev extension property. Namely, let Ω be either a Lipschitz
product domain or the Hartogs triangle. Then for any weight µ ∈ Ap, 1 < p < ∞, k ∈ Z+, any
h ∈ W k,p(Ω, µ) can be extended as an element h̃ in W k,p(Cn, µ) such that

‖h̃‖Wk,p(Cn,µ) ≤ C‖h‖Wk,p(Ω,µ)

for some constant C dependent only on k, p and the Ap constant of µ.
For simplicity of notations, throughout the rest of the paper, we shall say the two quantities a

and b satisfy a . b, if a ≤ Cb for some constant C > 0 dependent only possibly on Ω, k, p and the
A∗p constant A∗p(µ) (or Ap(µ)).

3 Weighted Sobolev estimates on product domains

Let Dj ⊂ C, j = 1, . . . , n, be bounded domains with Ck,1 boundary, n ≥ 2, k ∈ Z+ ∪ {0}, and let
Ω := D1 × · · · × Dn. Denote by Tj and Sj the solid and boundary Cauchy integral operators T
and S acting on functions along the j-th slice of Ω, respectively. Namely, for p > 1, z ∈ Ω,

Tjh(z) :=
−1

2πi

∫
Dj

h(z1, . . . , zj−1, ζ, zj+1, . . . , zn)

ζ − zj
dζ̄ ∧ dζ, for h ∈ Lp(Ω);

Sjh(z) :=
1

2πi

∫
bDj

h(z1, . . . , zj−1, ζ, zj+1, . . . , zn)

ζ − zj
dζ, for h ∈ Lp(bΩ).

(3.1)

Proposition 3.1. Let Ω = D1 × · · · × Dn, where each Dj is a bounded domain in C with Ck,1

boundary, k ∈ Z+ ∪ {0}. Assume µ ∈ A∗p, 1 < p <∞. Then for any h ∈ W k,p(Ω, µ),

‖Tjh‖Wk,p(Ω,µ) . ‖h‖Wk,p(Ω,µ). (3.2)

If in addition k ∈ Z+, then
‖Sjh‖Wk−1,p(Ω,µ) . ‖h‖Wk,p(Ω,µ). (3.3)

Proof. Without loss of generality, assume j = 1 and n = 2. For any multi-index α = (α1, α2) with
|α| ≤ k, since ∂̄1T1 = id, we can further assume ∇αT1h = ∂α1

1 T1 (∇α2
2 h). For a.e. fixed z2 ∈ D2,

µ(·, z2) ∈ Ap and ∇α2
2 h(·, z2) ∈ Wα1,p(D1, µ(·, z2)). Making use of (2.1), we have∫

D1

|∂α1
1 T1 (∇α2

2 h) (z1, z2)|pµ(z1, z2)dVz1 .
α1∑
l=0

∫
D1

|∇l
1∇

α2
2 h(z1, z2)|pµ(z1, z2)dVz1 .

Thus

‖∇αT1h‖pLp(Ω,µ) =

∫
D2

∫
D1

|∂α1
1 T1 (∇α2

2 h) (z1, z2)|pµ(z1, z2)dVz1dVz2 . ‖h‖
p
Wk,p(Ω,µ)

.
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The boundedness of S1 is proved similarly. Since S1h is holomorphic with respect to the
z1 variable, we only consider ∇αS1h(z) = ∂α1

1 S1(∇α2
2 h) with |α| ≤ k − 1. Then ∇α2

2 h(·, z2) ∈
W k−α2,p(D1) for a.e. z2 ∈ D2. Noting that k − α2 ≥ 1, by (2.2),∫

D1

|∂α1
1 S1 (∇α2

2 h) (z1, z2)|pµ(z1, z2)dVz1 .
α1+1∑
l=0

∫
D1

|∇l
1∇

α2
2 h(z1, z2)|pµ(z1, z2)dVz1 .

Here the sum for l up to α1 + 1 is necessary in the case when α = (0, k − 1), due to the absence
of (2.2) at k = 0 there. Hence ‖∇αS1h‖Lp(Ω,µ) . ‖h‖Wk,p(Ω,µ).

Remark 3.2. a). The estimate (3.2) is optimal. Indeed, consider h(z1, z2) = |z2|k−
2
p on 4×4.

Then h ∈ W k,s(4×4) for all s < p. However, T1h(z1, z2) = z̄1|z2|k−
2
p /∈ W k,p(4×4).

b). As a consequence of Theorem 2.2, one also has when k ∈ Z+, 1 < p <∞, j = 1, . . . , n,

k∑
l=0

‖∇l
jTjh‖Lp(Ω,µ) .

k−1∑
l=0

‖∇l
jh‖Lp(Ω,µ) . ‖h‖Wk−1,p(Ω,µ), (3.4)

k∑
l=0

‖∇l
jTjh‖W 1,p(Ω,µ) . ‖h‖Wk,p(Ω,µ), (3.5)

and
k∑
l=0

‖∇l
jSjh‖Lp(Ω,µ) .

k∑
l=0

‖∇l
jh‖Lp(Ω,µ) . ‖h‖Wk,p(Ω,µ). (3.6)

In the case when µ ≡ 1 and k = 0, an application of the classical complex analysis theory (see [17]
etc.) and Fubini theorem gives for 1 ≤ p <∞,

‖Tjh‖Lp(Ω) . ‖h‖Lp(Ω). (3.7)

These inequalities will be used later.

Given a (0, q) form

f =
∑

j1<···<jq

fj̄1···j̄qdz̄j1 ∧ · · · ∧ dz̄jq ∈ C
1(Ω̄),

define Tjf and Sjf to be the action on the corresponding component functions. Namely,

Tjf :=
∑

1≤j1<···<jq≤n

Tjfj̄1···j̄qdz̄j1 ∧ · · · ∧ dz̄jq ;

Sjf :=
∑

1≤j1<···<jq≤n

Sjfj̄1···j̄qdz̄j1 ∧ · · · ∧ dz̄jq .

Furthermore, define a projection πkf to be a (0, q − 1) form with

πkf :=
∑

1≤k<j2<···<jq≤n

fk̄j̄2···j̄qdz̄j2 ∧ · · · ∧ dz̄jq .

In their celebrated work [12, pp. 430], Nijenhuis and Woolf constructed a solution operator of the
∂̄ equation for (0, q) forms on product domains.
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Theorem 3.3. [12] Let Ω = D1 × · · · ×Dn, where each Dj is a bounded domain in C with Ck,1

boundary, k ∈ Z+. If f ∈ C1(Ω̄) is a ∂̄-closed (0, q) form on Ω, then

T f := T1π1f + T2S1π2f + · · ·+ TnS1 · · ·Sn−1πnf (3.8)

is a solution to ∂̄u = f on Ω.

Proof of Theorem 1.2: Given a ∂̄-closed (0, q) form f ∈ W n−1,p(Ω, µ), p > 1 (the k = 1 case
in the theorem), we first verify that T f in (3.8) is a weak solution to ∂̄u = f on Ω. Since
W n−1,p(Ω, µ) ⊂ W n−1,q(Ω) for some q > 1, for simplicity we directly assume f ∈ W n−1,p(Ω), p > 1.

Following an idea in [13], for each j = 1, . . . , n, let {D(m)
j }∞m=1 be a family of strictly increasing

open subsets of Dj such that

a). for m ≥ N0 ∈ N, bD
(m)
j is Ck,1, 1

m+1
< dist(D

(m)
j , Dc

j) <
1
m

;

b). H
(m)
j : D̄j → D̄

(m)
j is a C1 diffeomorphism with limm→∞ ‖H(m)

j − id‖C1(Dj) = 0.

Let Ω(m) = D
(m)
1 × · · · ×D(m)

n be the product of those approximating planar domains. Denote

by T
(m)
j , S

(m)
j and T (m) the operators defined in (3.1) and (3.8) accordingly, with Ω replaced by

Ω(m). Then T (m)f ∈ W 1,p(Ω(m)). Adopting the mollifier argument to f ∈ W n−1,p(Ω), we obtain

f ε ∈ C1(Ω(m)) ∩W n−1,p(Ω(m)) such that

‖f ε − f‖Wn−1,p(Ω(m)) → 0

as ε→ 0 and ∂̄f ε = 0 on Ω(m).
For each fixed m, T (m)f ε ∈ W n−1,p(Ω(m)) when ε is small and

∂̄T (m)f ε = f ε in Ω(m)

by Theorem 3.3. Furthermore,

‖T (m)f ε − T (m)f‖W 1,p(Ω(m)) . ‖f ε − f‖Wn−1,p(Ω(m)) → 0

as ε → 0. In particular, limε→0 T
(m)f ε exists a.e. in Ω(m) and is equal to T (m)f ∈ W n−1,p(Ω(m))

pointwisely.
Given a testing form φ with a compact support K, let m0 ≥ N0 be such that K ⊂ Ω(m0−2).

Denote by 〈·, ·〉Ω (and 〈·, ·〉Ω(m0)) the inner product(s) in L2(Ω) (and in L2(Ω(m0)), respectively),
and ∂̄∗ the formal adjoint of ∂̄. For all m ≥ m0, one has

〈T (m)f , ∂̄∗φ〉Ω(m0) = lim
ε→0
〈T (m)f ε, ∂̄∗φ〉Ω(m0) = lim

ε→0
〈∂̄T (m)f ε, φ〉Ω(m0) = lim

ε→0
〈f ε, φ〉Ω(m0) = 〈f , φ〉Ω.

(3.9)
We further show that

〈T f , ∂̄∗φ〉Ω = lim
m→∞

〈T (m)f , ∂̄∗φ〉Ω(m0) . (3.10)

For simplicity, assume πjf contains only one component function fj, so does φ. We will also drop
various integral measures, which should be clear from the context. For each j = 1, . . . , n,

〈T (m)
j S

(m)
1 · · ·S(m)

j−1πjf , ∂̄
∗φ〉Ω(m0)

=
1

(2πi)j−1

∫
z∈K

Tj

(∫
ζ1∈bD(m)

1

· · ·
∫
ζj−1∈bD

(m)
j−1

fj(ζ1, · · · , ζj, zj+1, · · · , zn)χ
D

(m)
j

(ζj)

(ζ1 − z1) · · · (ζj−1 − zj−1)

)
∂̄∗φ(z).
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Here χ
D

(m)
j

is the characteristic function of D
(m)
j ⊂ C.

For each (z, ζj) ∈ K × Dj \ {zj = ζj}, after a change of variables, there exists some function
h(m) ∈ C(D̄1 × · · · D̄j−1), such that ‖h(m) − 1‖C(D1×···Dj−1) → 0 as m→∞ and

∫
ζ1∈bD(m)

1

· · ·
∫
ζj−1∈bD

(m)
j−1

fj(ζ1, · · · , ζj, zj+1, · · · , zn)χ
D

(m)
j

(ζj)

(ζ1 − z1) · · · (ζj−1 − zj−1)

=

∫
ζ1∈bD1

· · ·
∫
ζj−1∈bDj−1

fj(ζ1, · · · , ζj, zj+1, · · · , zn)h(m)(ζ1, · · · , ζj−1)χ
D

(m)
j

(ζj)

(ζ1 − z1) · · · (ζj−1 − zj−1)
.

Notice that when z ∈ K(⊂ Ω(m0−2)) and ζl ∈ bD(m)
l ,m ≥ m0, l = 1, . . . , j − 1,

1

|ζl − zl|
≤ 1

dist((Ω(m))c,Ω(m0−2))
≤ 1

dist((Ω(m0))c,Ω(m0−2))
< m2

0.

Hence ∣∣∣〈T (m)
j S

(m)
1 · · ·S(m)

j−1πjf , ∂̄
∗φ〉Ω(m0) − 〈TjS1 · · ·Sj−1πjf , ∂̄

∗φ〉Ω(m0)

∣∣∣
.

∥∥∥∥∥Tj
(∫

bD1×···×bDj−1

∣∣∣fjh(m)χ
D

(m)
j
− fj

∣∣∣)∥∥∥∥∥
L1(Ω)

.
(3.11)

On the other hand,∥∥∥∥∥
∫
bD1×···×bDj−1

∣∣∣fjh(m)χ
D

(m)
j
− fj

∣∣∣∥∥∥∥∥
L1(Ω)

.
∥∥∥|fj| ∣∣∣h(m)χ

D
(m)
j
− 1
∣∣∣∥∥∥
L1(bD1×···×bDj−1×Dj×···×Dn)

.‖fj‖L1(bD1×···×bDj−1×Dj×···×Dn)‖h(m) − 1‖C(D1×···×Dj−1)

+ ‖fj‖Lp(bD1×···×bDj−1×Dj×···×Dn)vol1−
1
p (Dj \D(m)

j )

.‖fj‖Wn−1,p(Ω)

(
‖h(m) − 1‖C(D1×···×Dj−1) + vol1−

1
p (Dj \D(m)

j )
)
→ 0

(3.12)

as m→∞. Here we used the trace theorem in the third inequality. Combining (3.7), (3.11) and
(3.12) we finally get∣∣∣〈T (m)

j S
(m)
1 · · ·S(m)

j−1πjf − TjS1 · · ·Sj−1πjf , ∂̄
∗φ
〉

Ω(m0)

∣∣∣→ 0

as m→∞. (3.10) is thus proved. Combining (3.9) with (3.10), we deduce that

〈T f , ∂̄∗φ〉Ω = lim
m→∞

〈T (m)f , ∂̄∗φ〉Ω(m0) = 〈f , φ〉Ω,

which verifies T f as a weak solution to ∂̄ on Ω.
We next prove the weighted Sobolev estimate for the operator T defined in (3.8). Since ∂̄T f = f ,

we can further assume ∇k = ∂α for any multi-index α = (α1, . . . , αn) with |α| ≤ k. In view of
(3.8) and the fact that πj being a projection is automatically bounded in W k,p(Ω, µ), we only
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need to estimate ‖∂αTnS1 · · ·Sn−1h‖Lp(Ω,µ) in terms of ‖h‖Wk+n−2,p(Ω,µ). Write ∂αTnS1 · · ·Sn−1h =
(∂αnn Tn)(∂α1

1 S1) · · · (∂αn−1

n−1 Sn−1)h. If αn ≥ 1, we apply (3.4) and (3.3) inductively to have

‖∂αTnS1 · · ·Sn−1h‖Lp(Ω,µ) .‖(∂α1
1 S1) · · · (∂αn−1

n−1 Sn−1)h‖Wαn−1,p(Ω,µ)

.‖(∂α2
2 S2) · · · (∂αn−1

n−1 Sn−1)h‖Wαn−1+α1+1,p(Ω,µ)

. · · ·

.‖h‖
W

∑n
j=1

αj+n−2,p
(Ω,µ)

≤ ‖h‖Wk+n−2,p(Ω,µ).

If αn = 0, then there exists some 1 ≤ j ≤ n − 1, such that αj ≥ 1. Without loss of generality,
assume α1 ≥ 1. Then by (3.4), (3.6) and (3.3) inductively,

‖∂αTnS1 · · ·Sn−1h‖Lp(Ω,µ) .‖(∂α1
1 S1) · · · (∂αn−1

n−1 Sn−1)h‖Lp(Ω,µ)

.‖(∂α2
2 S2) · · · (∂αn−1

n−1 Sn−1)h‖Wα1,p(Ω,µ)

.‖(∂α3
3 S3) · · · (∂αn−1

n−1 Sn−1)h‖Wα1+α2+1,p(Ω,µ)

. · · ·

.‖h‖Wk+n−2,p(Ω,µ).

The theorem is thus proved.

Similar to an example in [19], the following one shows that the ∂̄ problem does not improve
regularity in weighted Sobolev spaces on product domains. As such the weighted Sobolev regularity
obtained in Theorem 1.2 is optimal when n = 2.

Example 1. For each k ∈ Z+, 1 < p < ∞, ε > 0 and any s ∈
(

2
1+ε

, 2
)
\ {1}, consider

f = (z2 − 1)k−sdz̄1 on 4×4, 1
2
π < arg(z2 − 1) < 3

2
π and µ = |z2 − 1|s(p−1). Then µ ∈ A∗p,

f ∈ W k,p(4×4, µ) and is ∂̄-closed on 4×4. However, there does not exist a solution u ∈
W k,p+ε(4×4, µ) to ∂̄u = f on 4×4.

Proof. One can directly verify that f ∈ W k,p(4×4, µ) is ∂̄-closed on 4×4 and µ ∈ A∗p.
Suppose there exists some u ∈ W k,p+ε(4×4, µ) satisfying ∂̄u = f on 4×4. Then there

exists some holomorphic function h on4×4, such that u = (z2−1)k−sz̄1+h ∈ W k,p+ε(4×4, µ).
For each (r, z2) ∈ U := (0, 1)×4 ⊂ R3, consider

v(r, z2) :=

∫
|z1|=r

u(z1, z2)dz1.

By Hölder inequality, Fubini theorem and the fact that p > 1,

‖∂kz2v‖
p+ε
Lp+ε(U,µ) =

∫
U

∣∣∣∣∫
|z1|=r

∂kz2u(z1, z2)dz1

∣∣∣∣p+ε µ(z2)dVz2dr

=

∫
|z2|<1

∫ 1

0

∣∣∣∣r ∫ 2π

0

|∂kz2u(reiθ, z2)|dθ
∣∣∣∣p+ε drµ(z2)dVz2

.
∫
|z2|<1

∫ 1

0

∫ 2π

0

|∂kz2u(reiθ, z2)|p+εdθrdrµ(z2)dVz2

=

∫
|z2|<1,|z1|<1

|∂kz2u(z)|p+εµ(z2)dVz ≤ ‖u‖p+εWk,p+ε(4×4,µ)
<∞.
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Thus ∂kz2v ∈ L
p+ε(U, µ).

On the other hand, by Cauchy’s theorem, for each (r, z2) ∈ U ,

∂kz2v(r, z2) =(k − s) · · · (1− s)
∫
|z1|=r

(z2 − 1)−sz̄1dz1

=(k − s) · · · (1− s)(z2 − 1)−s
∫
|z1|=r

r2

z1

dz1 = 2(k − s) · · · (1− s)πr2i(z2 − 1)−s,

which is not in Lp+ε(U, µ) by the choice of s > 2
1+ε

. This is a contradiction!

Making use of Theorem 1.2, one can immediately prove the weighted Sobolev estimate for the
∂̄ problem on H in Corollary 1.3. In comparison to the statement of Theorem 1.1, the solution
operator in Corollary 1.3 is the same for all Sobolev levels.

Proof of Corollary 1.3: For any f =
∑2

j=1 fj(z)dz̄j ∈ W k,p(H), making use of the change of vari-
ables formula we have the pull-back

ψ∗f = w̄2f1 ◦ ψdw̄1 + (w̄1f1 ◦ ψ + f2 ◦ ψ) dw̄2. (3.13)

Moreover, noting by the chain rule

∂w1 = w2∂z1 , ∂w2 = w1∂z1 + ∂z2 ,

we have ψ∗f ∈ W k,p(4×4, |w2|2) with

‖ψ∗f‖p
Wk,p(4×4,|w2|2)

.
2∑
j=1

k∑
l=0

∫
4×4

|∇l
w(fj ◦ ψ)(w)|p|w2|2dVw

.
2∑
j=1

k∑
l=0

∫
H
|∇l

zfj(z)|pdVz = ‖f‖p
Wk,p(H)

.

(3.14)

Since k ∈ Z+, p > 2, by (3.14) one has ψ∗f to be ∂̄-closed on 4×4 (see, for instance, [10, pp.
28]). Making use of Theorem 1.2, there exists a solution ũ ∈ W k,p(4×4, |w2|2) solving ∂̄ũ = ψ∗f .
Arguing in the same way as in the proof of [19, Theorem 1.2], we know that T f := ũ ◦ φ solves
∂̄u = f . Moreover,

‖T f‖p
Wk,p(H,|z2|kp)

=
k∑
l=0

∫
H
|∇l

z(ũ ◦ φ)(z)zk2 |pdVz

.
k∑
l=0

∫
4×4

|∇l
wũ(w)|p|w2|2dVw = ‖ũ‖p

Wk,p(4×4,|w2|2)
.

(3.15)

Here we used the chain rule

∂z1 =
1

z2

∂w1 , ∂z2 = −z1

z2
2

∂w1 + ∂w2

and the fact that |z1| < |z2| on H.
Finally, combining (3.14)-(3.15) and Theorem 1.2,

‖T f‖Wk,p(H,|z2|kp) . ‖ũ‖Wk,p(4×4,|w2|2) . ‖ψ∗f‖pWk,p(4×4,|w2|2)
. ‖f‖p

Wk,p(H)
.
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4 Optimal Sobolev regularity on the Hartogs triangle

In this section, following an idea of Ma and Michel in [11], we shall adjust the solution operator
provided by Corollary 1.3, so that the new operator cancels the loss in the exponent of the weight.
In detail, given a W k,p datum on the Hartogs triangle H, we truncate its (k − 1)-th order Taylor
polynomial at (0, 0) and then pull it back to the punctured bidisc 4×4∗. Upon extension and
solving the ∂̄ problem on the bidisc4×4 using Theorem 1.2, we once again truncate the (k−1)-th
order holomorphic Taylor polynomial in the w2 variable at w2 = 0 from the solution. Both Taylor
polynomials are meaningful when p > 4 due to the Sobolev embedding theorem. Moreover, we can
obtain a refined weighted Sobolev regularity at each operation (Proposition 4.1 and Proposition
4.5) as a consequence of the truncation. Finally, pushing forward this truncated solution to H, we
show it is a solution to ∂̄ on H that maintains the same Sobolev regularity as that of the datum.

Throughout the rest of the paper, z = (z1, z2) will serve as the variable on H, and w = (w1, w2)
as the variable on 4×4.

4.1 Truncating data on the Hartogs triangle

Given a ∂̄-closed (0, 1) form f ∈ W k,p(H), k ∈ Z+, p > 4, recalling H satisfies the Sobolev extension
property, it extends to an element, still denoted by f , in W k,p(C2). In particular, by Sobolev
embedding theorem, f ∈ Ck−1,α(H) for some α > 0. Denote by Pk the (k − 1)-th order Taylor
polynomial operator at (0, 0). Namely, if h ∈ Ck−1 near (0, 0), then

Pkh(z) :=
k−1∑

l1+l2+s1+s2=0

∂l1z1 ∂̄
l2
z1
∂s1z2 ∂̄

s2
z2
h(0)

l1!l2!s1!s2!
zl11 z̄

l2
1 z

s1
2 z̄

s2
2 .

Then Pkf is ∂̄-closed on H and thus on 4×4 (see [11, Lemma 3]). Applying the W k,p estimate
of ∂̄ on 4×4 (i.e., Theorem 1.2 with n = 2 and µ ≡ 1), one obtains some uk ∈ W k,p(4×4)
satisfying

∂̄uk = Pkf on 4×4;

‖uk‖Wk,p(4×4) . ‖Pkf‖Wk,p(4×4) . ‖Pkf‖Ck−1(H) . ‖f‖Wk,p(H).
(4.1)

Let ψ be defined in (2.3). We truncate f by Pkf , and then pull back the truncated datum by ψ
to obtain ψ∗(f − Pkf) on the punctured bidisc.

Denote by P2,k the (k − 1)-th order Taylor polynomial operator in the complex w2 variable at
w2 = 0 of Ck−1 functions on 4×4. Then for any h ∈ W k,p(H), k ∈ Z+, p > 4,

ψ∗ (Pkh) = P2,k (ψ∗h) .

In particular,
P2,k (ψ∗(h− Pkh)) = 0. (4.2)

The following proposition states that the pull-back ψ∗(f − Pkf) of the truncated datum satisfies
a more refined Sobolev estimate than (3.14).

Proposition 4.1. Let f ∈ W k,p(H) be a ∂̄-closed (0, 1) form on H, k ∈ Z+, p > 4 and ψ be defined
in (2.3). Let

f̃ = f̃1dw̄1 + f̃2dw̄2 := ψ∗(f − Pkf) on 4×4∗.
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Then f̃ extends as a ∂̄-closed (0, 1) form on 4×4, with f̃ ∈ W k,p(4×4, |w2|2) and

P2,k f̃ = 0. (4.3)

Moreover, for t, s ∈ Z+ ∪ {0}, t+ s ≤ k,∥∥∥|w2|−k+s∇t
w1
∇s
w2

f̃
∥∥∥
Lp(4×4,|w2|2)

. ‖f‖Wk,p(H). (4.4)

In order to prove Proposition 4.1, we need to establish a crucial weighted Hardy-type inequality
on C. We shall adopt the same notation Pk for the (k − 1)-th order Taylor polynomial operator
at 0 on Ck−1 functions near 0 ∈ C.

Lemma 4.2. For any h ∈ W k,p(C, |w|2), k ∈ Z+, p > 4 with Pkh = 0, and j = 0, . . . , k,∫
C
|∇j

wh(w)|p|w|2−(k−j)pdVw .
∫
C
|∇k

wh(w)|p|w|2dVw.

Proof. Since the j = k case is trivial, we assume j ≤ k−1. We shall show that for h ∈ W l,p(C, |w|2)
with Plh = 0, l = 1, . . . , k,∫

C
|h(w)|p|w|2−lpdVw .

∫
C
|∇wh(w)|p|w|2−(l−1)pdVw. (4.5)

If so, replacing l and h by k − j and ∇j
wh in (4.5), respectively, then∫

C
|∇j

wh(w)|p|w|2−(k−j)pdVw .
∫
C
|∇j+1

w h(w)|p|w|2−(k−j−1)pdVw.

A standard induction on j will complete the proof of the lemma.
To show (4.5), first apply the Stokes’ theorem to |h(w)|p|w|2−lpw̄dw on4R\4ε, 0 < ε < R <∞

to get

1

2i

∫
b4R
|h(w)|p|w|2−lpw̄dw − 1

2i

∫
b4ε
|h(w)|p|w|2−lpw̄dw

=

∫
4R\4ε

∂̄w
(
|h(w)|p|w|2−lpw̄

)
dVw

=

(
2− lp

2

)∫
4R\4ε

|h(w)|p|w|2−lpdVw +

∫
4R\4ε

∂̄w (|h(w)|p) |w|2−lpw̄dVw.

Since
1

2i

∫
b4R
|h(w)|p|w|2−lpw̄dw =

1

2

∫ 2π

0

|h(Reiθ)|pR4−lpdθ ≥ 0,

one further has(
lp

2
− 2

)∫
4R\4ε

|h(w)|p|w|2−lpdVw ≤
1

2i

∫
b4ε
|h(w)|p|w|2−lpw̄dw +

∫
4R\4ε

∂̄w (|h(w)|p) |w|2−lpw̄dVw.

(4.6)

We claim that

lim
ε→0

ε3−lp
∫
b4ε
|h(w)|pdσw = 0, (4.7)
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which is equivalent to

lim
ε→0

∣∣∣∣∫
b4ε
|h(w)|p|w|2−lpw̄dw

∣∣∣∣ = 0.

Indeed, let q be the dual of p, i.e., 1
p

+ 1
q

= 1. For a.e. w ∈ b4 and 0 < δ < ε, applying

Fubini theorem in polar coordinates, one can see h(tw) ∈ W k,p((δ, ε)) as a function of t. By the
fundamental theorem of calculus, we have

h(εw) = h(δw) +

∫ ε

δ

d

dt
h(tw)dt.

Letting δ → 0 in the above, we have

|h(εw)| ≤
∫ ε

0

|∇h(tw)|dt.

An induction process further gives

|h(εw)|p ≤
∣∣∣∣∫ ε

0

∫ t1

0

· · ·
∫ tl−1

0

|∇lh(tlw)|dtl · · · dt2dt1
∣∣∣∣p

≤
∣∣∣∣∫ ε

0

∫ ε

0

· · ·
∫ ε

0

|∇lh(tlw)|dtl · · · dt2dt1
∣∣∣∣p

≤ε(l−1)p

∣∣∣∣∫ ε

0

|∇lh(tw)|t
3
p · t−

3
pdt

∣∣∣∣p
≤ε(l−1)p

∫ ε

0

|∇lh(tw)|pt3dt
(∫ ε

0

t−
3q
p dt)

) p
q

.εlp−4

∫ ε

0

|∇lh(tw)|pt3dt.

(4.8)

Here we used the fact that −3q
p
> −1 when p > 4 in the last inequality. Note that

ε

∫
b4
|h(εw)|pdσw =

∫
b4ε
|h(w)|pdσw.

Multiplying both sides of (4.8) by ε4−lp and integrating over b4, one has

ε3−lp
∫
b4ε
|h(w)|pdσw .

∫ ε

0

∫
b4
|∇lh(tw)|pt3dσwdt

=

∫ ε

0

∫
b4t
|∇lh(w)|p|w|2dσwdt

≤
∫
4ε
|∇lh(w)|p|w|2dVw → 0

as ε→ 0. The claim (4.7) is thus proved.
Pass ε→ 0 and R→∞ in (4.6), and then make use of (4.7). Since lp

2
− 2 > 0, we further infer∫

C
|h(w)|p|w|2−lpdVw .

∫
C
|∇wh(w)||h(w)|p−1|w|3−lpdVw

=

∫
C
|∇wh(w)||w|

2
p
−(l−1) · |h(w)|p−1|w|2−lp+l−

2
pdVw

≤
(∫

C
|∇wh(w)|p|w|2−(l−1)pdVw

) 1
p
(∫

C
|h(w)|p|w|2−lpdVw

)1− 1
p

.
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(4.5) follows by dividing both sides by
(∫

C |h(w)|p|w|2−lpdVw
)1− 1

p and then taking the p-th power.

Corollary 4.3. Let D be a uniform domain in C and 0 ∈ D. Then for any h ∈ W k,p(D, |w|2), k ∈
Z+, p > 4 with Pkh = 0, and j = 0, . . . , k,∫

D

|∇j
wh(w)|p|w|2−(k−j)pdVw .

∫
D

|∇k
wh(w)|p|w|2dVw.

Proof. Given h satisfying the assumption of the corollary, according to [4, Theorem 1.2], one can
extend h to be an element h̃ ∈ W k,p(C, |w|2), such that∫

C
|∇k

wh̃(w)|p|w|2dVw .
∫
D

|∇k
wh(w)|p|w|2dVw.

Obviously Pkh̃ = 0. Hence making use of Lemma 4.2 to h̃, we have∫
D

|∇j
wh(w)|p|w|2−(k−j)pdVw ≤

∫
C
|∇j

wh̃(w)|p|w|2−(k−j)pdVw

.
∫
C
|∇k

wh̃(w)|p|w|2dVw .
∫
D

|∇k
wh(w)|p|w|2dVw.

Remark 4.4. Recall that any domain with Lipschitz boundary is a uniform domain. As a direct
consequence of Corollary 4.3, whenever h ∈ W k,p(4, |w|2), p > 4 with Pkh = 0, then w−kh ∈
Lp(4, |w|2).

As shown in the proof of Lemma 4.2 (and thus Corollary 4.3), the assumption p > 4 is essential
and can not be dropped. Now we are ready to prove Proposition 4.1 making use of Corollary 4.3.

Proof of Proposition 4.1: The ∂̄-closedness of ψ∗f on 4×4 was checked in Corollary 1.3. Thus
f̃ is ∂̄-closed on 4×4, and by (3.13),

f̃1 = w̄2ψ
∗(f1 − Pkf1), f̃2 = w̄1ψ

∗(f1 − Pkf1) + ψ∗(f2 − Pkf2). (4.9)

(4.3) follows from the above (4.9) and (4.2).
Next we prove (4.4). For l1, l2 ∈ Z+ ∪ {0} with l1 + l2 = t,

∂̄l1w1
∂l2w1

(ψ∗fj) = w̄l12 w
l2
2 ψ
∗ (∂̄l1z1∂l2z1fj) , j = 1, 2.

Observing that
∇t
z1

(Pkfj) = Pk−t
(
∇t
z1
fj
)
,

we get from (4.9) that∥∥∥|w2|−k+s∇t
w1
∇s
w2

f̃
∥∥∥
Lp(4×4,|w2|2)

.
2∑
j=1

∥∥|w2|−k+s∇s
w2
∇t
w1

(ψ∗(fj − Pkfj))
∥∥
Lp(4×4,|w2|2)

.
2∑
j=1

∑
l1+l2=t

∥∥|w2|−k+s∇s
w2

(
w̄l12 w

l2
2 ψ
∗ (∇t

z1
fj − Pk−t

(
∇t
z1
fj
)))∥∥

Lp(4×4,|w2|2)

.
∑

1≤j≤2

∑
0≤l≤s

∥∥|w2|−k+t+l∇l
w2

(
ψ∗
(
∇t
z1
fj − Pk−t

(
∇t
z1
fj
)))∥∥

Lp(4×4,|w2|2)
.
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Thus we only need to estimate
∥∥|w2|−k+t+l∇l

w2

(
ψ∗
(
∇t
z1
fj − Pk−t

(
∇t
z1
fj
)))∥∥

Lp(4×4,|w2|2)
, 0 ≤ l ≤

s.
For each fixed w1 ∈ 4, let

hw1 := ψ∗
(
∇t
z1
fj − Pk−t

(
∇t
z1
fj
))

(w1, ·).

Then Pk−thw1 = 0 by (4.2). Applying Corollary 4.3 to hw1 on 4, we have for 0 ≤ l(≤ s) ≤ k − t,∥∥|w2|−k+t+l∇l
w2

(
ψ∗
(
∇t
z1
fj − Pk−t

(
∇t
z1
fj
)))∥∥p

Lp(4×4,|w2|2)

≤
∫
4

∫
4
|w2|2−(k−t−l)p ∣∣∇l

w2

(
ψ∗
(
∇t
z1
fj − Pk−t

(
∇t
z1
fj
)))

(w1, w2)
∣∣p dVw2dVw1

.
∫
4

∫
4
|w2|2

∣∣∇k−t
w2

(
ψ∗
(
∇t
z1
fj − Pk−t

(
∇t
z1
fj
)))

(w1, w2)
∣∣p dVw2dVw1 .

(4.10)

On the other hand, note that for any function h ∈ W k−t,p(H), l1 + l2 = k − t,

∂̄l1w2
∂l2w2

ψ∗h =

l1∑
m1=0

l2∑
m2=0

Cm1,m2,l1,l2w̄
m1
1 wm2

1 ψ∗
(
∂̄m1
z1
∂̄l1−m1
z2

∂m2
z1
∂l2−m2
z2

h
)

for some constants Cm1,m2,l1,l2 dependent only on m1,m2, l1 and l2. Thus∣∣∇k−t
w2

(
ψ∗
(
∇t
z1
fj − Pk−t

(
∇t
z1
fj
)))∣∣

.
k−t∑
m=0

|w1|m
∣∣ψ∗ (∇t+m

z1
∇k−t−m
z2

fj
)
− ψ∗

(
∇m
z1
∇k−t−m
z2

(
Pk−t

(
∇t
z1
fj
)))∣∣

≤
k−t∑
m=0

∣∣ψ∗ (∇t+m
z1
∇k−t−m
z2

fj
)∣∣ .

Here we used in the last equality the fact that ∇k−t
z

(
Pk−t

(
∇t
z1
fj
))

= 0. Hence by a change of
variables (4.10) is further estimated as follows.∥∥|w2|−k+t+l∇l

w2

(
ψ∗
(
∇t
z1
fj − Pk−t

(
∇t
z1
fj
)))∥∥p

Lp(4×4,|w2|2)

.
k−t∑
m=0

∫
4

∫
4
|w2|2

∣∣ψ∗ (∇t+m
z1
∇k−t−m
z2

fj
)

(w1, w2)
∣∣p dVw2dVw1

.‖ψ∗(∇k
zfj)‖

p
Lp(4×4,|w2|2) . ‖∇

k
zfj‖

p
Lp(H) ≤ ‖f‖

p
Wk,p(H)

.

The proof of (4.4) is complete. That f̃ ∈ W k,p(4×4, |w2|2) is a direct consequence of (4.4).

4.2 Truncating solutions on the bidisc

Given f̃ in Proposition 4.1, let u∗ be the solution to ∂̄u∗ = f̃ on 4×4 obtained in Theorem 1.2
with

‖u∗‖Wk,p(4×4,|w2|2) . ‖f̃‖Wk,p(4×4,|w2|2). (4.11)
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Consider

ũ(w1, w2) :=u∗(w1, w2)− P̃2,ku
∗(w1, w2)

=u∗(w1, w2)−
k−1∑
l=0

1

l!
wl2∂

l
w2
u∗(w1, 0), (w1, w2) ∈ 4×4,

(4.12)

where P̃2,k is the (k − 1)-th order holomorphic Taylor polynomial operator in the w2 variable at
w2 = 0. ũ is well defined, due to the facts that for each fixed w1 ∈ 4, l ≤ k − 1, ∂lw2

u∗(w1, ·) ∈
W 1,p(4, |w2|2), and when p > 4,

W 1,p(4, |w2|2) ⊂ W 1,q(4) ⊂ Cα(4) (4.13)

for some q > 2, and α = 1− 2
q
. Here the last inclusion W 1,q(4) ⊂ Cα(4) is the Sobolev embedding

theorem; the inclusion W 1,p(4, |w2|2) ⊂ W 1,q(4) can be seen as follows. Choose some r ∈ (2
p
, 1

2
)

and let q = pr. Then q > 2 and r
1−r < 1. For any h ∈ W 1,p(4, |w2|2),∫

4
|h(w)|qdVw =

∫
4
|h(w)|q|w2|2r|w2|−2rdV ≤

(∫
4
|h(w)|q|w2|2dV

)r (∫
4
|w2|−

2r
1−r dVw

)1−r

<∞,

and similarly |∇h| ∈ Lq(4). The goal of this subsection is to show that ũ satisfies the following
refined weighted estimate.

Proposition 4.5. Let ũ be defined in (4.12). Then ũ ∈ W k,p(4×4, |w2|2). Moreover, for each
s, t ∈ Z+ ∪ {0} with s+ t ≤ k, we have∥∥|w2|−k+s∂tw1

∂sw2
ũ
∥∥
Lp(4×4,|w2|2)

. ‖f‖Wk,p(H) .

We begin by first proving ũ ∈ W k,p(4×4, |w2|2) below. It is worth pointing out that, arguing
similarly as in (4.13), one has when k ∈ Z+, p > 4,

W k,p(4, |w2|2) ⊂ W k,q(4) ⊂ Ck−1,α(4).

for some q > 2 and α > 0. In particular, for any h ∈ W k,p(4×4, |w2|2), k ∈ Z+, p > 4, we have
h(w1, ·) ∈ Ck−1,α(4) for a.e. fixed w1 ∈ 4.

Lemma 4.6. Let ũ be defined in (4.12). For each l = 0, . . . , k−1, ∂lw2
u∗(w1, 0) ∈ W k,p(4×4, |w2|2)

with ∥∥∂lw2
u∗(w1, 0)

∥∥
Wk,p(4×4,|w2|2)

. ‖f‖Wk,p(H) . (4.14)

Consequently, ũ ∈ W k,p(4×4, |w2|2) satisfying

P2,kũ = 0, (4.15)

∂̄ũ = f̃ on 4×4 (4.16)

and
‖ũ‖Wk,p(4×4,|w2|2) . ‖f‖Wk,p(H). (4.17)
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Proof. We first show that
∑k−1

l=0 w
l
2∂

l
w2
u∗(w1, 0) is holomorphic on 4×4, from which (4.16) fol-

lows. Clearly, it is holomorphic in the w2 variable. For the holomorphy in the w1 variable, note
that

∂̄w1∂
l
w2
u∗ = ∂lw2

f̃1

in the weak sense. On the other hand, for fixed w1 ∈ 4, ∂lw2
f̃1(w1, ·) ∈ Cα(4) for some α > 0 by

(4.13), and ∂lw2
f̃1(w1, 0) = 0 by (4.3). Thus ∂̄w1∂

l
w2
u∗ ∈ Cα(4) with ∂̄w1∂

l
w2
u∗(w1, 0) = 0.

Next we prove (4.14). By the holomorphy of ∂lw2
u∗(w1, 0) above, it suffices to estimate∥∥∂tw1

∂lw2
u∗(w1, 0)

∥∥
Lp(4×4,|w2|2)

for t = 0, . . . , k and l = 0, . . . , k − 1. Let χ be a smooth func-

tion on 4 such that χ = 1 in 4 1
2

and χ = 0 outside 4. By (3.8) (or directly verifying

u∗ = T1f̃1 + T2S1f̃2 = T2f̃2 + T1S2f̃1), we have

∂tw1
∂lw2

u∗ =∂lw2
T2

(
(1− χ(w2))∂tw1

f̃2

)
+ ∂tw1

∂lw2
T2

(
χ(w2)f̃2

)
+ ∂lw2

S2

(
∂tw1

T1f̃1

)
= : A1 + A2 + A3.

ForA3, let h := ∂tw1
T1f̃1. Since t ≤ k, by (3.5) h ∈ W 1,p(4×4, |w2|2), with ‖h‖W 1,p(4×4,|w2|2) .

‖f̃1‖Wk,p(4×4,|w2|2). Note that for w1 ∈ 4,

A3(w1, 0) =
l!

2πi

∫
b4

h(w1, ζ)

ζ l+1
dζ.

Hence

‖A3(w1, 0)‖pLp(4×4,|w2|2) .
∫
4

∣∣∣∣∫
b4
|h(w1, ζ)|dσζ

∣∣∣∣p dVw1

∫
4
|w2|2dVw2

.
∫
4

∣∣∣∣∫
4
|h(w1, w2)|+ |∇w2h(w1, w2)|dVw2

∣∣∣∣p dVw1

.‖h‖pW 1,p(4×4,|w2|2) . ‖f̃1‖pWk,p(4×4,|w2|2)

.‖f‖p
Wk,p(H)

.

(4.18)

Here in the second line we used the trace theorem for W 1,1(4) ⊂ L1(∂4); in the third line we

used Hölder inequality and the fact that |w2|2 ∈ Ap (or directly that |w2|−
2
p−1 ∈ L1(4)); in the

fourth line we used Proposition 4.1.
For A1, by the choice of χ, we have

A1(w1, 0) = − l!

2πi

∫
4

(1− χ(ζ))∂tw1
f̃2(w1, ζ)

ζ l+1
dζ̄ ∧ dζ,

with
∣∣∣1−χ(ζ)
ζl+1

∣∣∣ . 1 on 4. Thus by Proposition 4.1 and the fact that |w2|2 ∈ Ap similarly,

‖A1(w1, 0)‖pLp(4×4,|w2|2) .
∫
4

∣∣∣∣∫
4

∣∣∣∂tw1
f̃2(w1, ζ)

∣∣∣ dVζ∣∣∣∣p dVw1

∫
4
|w2|2dVw2

.
∫
4

∣∣∣∣∫
4

∣∣∣∂tw1
f̃2(w1, w2)

∣∣∣ dVw2

∣∣∣∣p dVw1

.
∫
4

∫
4

∣∣∣∂tw1
f̃2(w1, w2)

∣∣∣p |w2|2dVw2dVw1

≤‖f̃‖p
Wk,p(4×4,|w2|2)

. ‖f‖p
Wk,p(H)

.

(4.19)
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Now we treat A2. With a change of variables, rewrite it as

A2(w1, 0) = − 1

2πi
∂tw1

∂lw2

∫
C

χ(ζ + w2)f̃2(w1, ζ + w2)

ζ
dζ̄ ∧ dζ

∣∣∣∣∣
w2=0

= − 1

2πi
∂tw1

∫
C

∂lζ

(
χ(ζ + w2)f̃2(w1, ζ + w2)

)
ζ

dζ̄ ∧ dζ

∣∣∣∣∣∣
w2=0

=− 1

2πi
∂tw1

∫
C

∂lζ

(
χ(ζ)f̃2(w1, ζ)

)
ζ

dζ̄ ∧ dζ.

Note that χ(·)f̃2(w1, ·) ∈ Ck−1,α
c (4) for some α > 0 with Pk

(
χ(·)f̃2(w1, ·)

)
= 0. In particular,

for j = 0, . . . , l,
∣∣∣∂jζ (χ(ζ)f̃2(w1, ζ)

)∣∣∣ . |ζ|k−1−j+α near 0. With a repeated application of Stokes’

theorem, we have

A2(w1, 0) =− l!

2πi
∂tw1

∫
C

χ(ζ)f̃2(w1, ζ)

ζ l+1
dζ̄ ∧ dζ

=− l!

2πi

∫
4

χ(ζ)∂tw1
f̃2(w1, ζ)

ζ l+1
dζ̄ ∧ dζ.

Since l ≤ k − 1, making use of Proposition 4.1 with s = 0 and the fact that |w2|2 ∈ Ap again, we
get

‖A2(w1, 0)‖pLp(4×4,|w2|2) .
∫
4

∣∣∣∣∫
4
|ζ|−(l+1)

∣∣∣∂tw1
f̃2(w1, ζ)

∣∣∣ dVζ∣∣∣∣p dVw1

∫
4
|w2|2dVw2

.
∫
4

∣∣∣∣∫
4
|w2|−(l+1)

∣∣∣∂tw1
f̃2(w1, w2)

∣∣∣ dVw2

∣∣∣∣p dVw1

.
∫
4

∫
4
|w2|−(l+1)p

∣∣∣∂tw1
f̃2(w1, w2)

∣∣∣p |w2|2dVw2dVw1

.
∥∥∥|w2|−k∂tw1

f̃2

∥∥∥p
Lp(4×4,|w2|2)

. ‖f‖p
Wk,p(H)

.

(4.20)

Combining (4.18)-(4.20), we have the desired inequality (4.14).
(4.17) follows from (4.14) and (4.11). To see (4.15), we shall verify that ∂̄mw2

∂lw2
ũ(w1, 0) = 0 for

all l,m ∈ Z+ ∪ {0}, l + m ≤ k − 1. Note that ∂̄mw2
∂lw2

ũ(w1, ·) ∈ Cα(4) for some α > 0 by (4.17).

If m = 0, then ∂lw2
ũ(w1, 0) = 0 by its definition. If m ≥ 1, since ∂̄w2ũ = f̃2 by (4.16),

∂̄mw2
∂lw2

ũ(w1, 0) = ∂̄m−1
w2

∂lw2
f̃2(w1, 0) = 0,

where we used (4.3) in the last equality. Thus (4.15) is proved, and the proof of the lemma is
complete.

In order to derive the refined weighted estimate of ũ in Proposition 4.5, we also need the
following modified identities/formulas for W k,p functions on 4 with vanishing (k − 1)-th Taylor
polynomials.
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Lemma 4.7. Let h ∈ W k,p(4, |w|2), k ∈ Z+, p > 4 with Pkh = 0. Then for a.e. w ∈ 4,
i).

2πiw−kh(w) =

∫
b4

h(ζ)

ζk(ζ − w)
dζ −

∫
4

∂̄h(ζ)

ζk(ζ − w)
dζ̄ ∧ dζ;

ii).
Th(w)− P̃k(Th)(w) = wkT

(
w−kh

)
(w),

where P̃k is the (k − 1)-th order holomorphic Taylor polynomial operator at 0.

Proof. For part i), applying the Cauchy-Green formula to w−kh on 4\4ε, we have for each fixed
w 6= 0,

2πiw−kh(w) =

∫
b4

h(ζ)

ζk(ζ − w)
dζ −

∫
b4ε

h(ζ)

ζk(ζ − w)
dζ −

∫
4\4ε(0)

∂̄h(ζ)

ζk(ζ − w)
dζ̄ ∧ dζ. (4.21)

We claim that

lim
ε→0

∫
b4ε

h(ζ)

ζk(ζ − w)
dζ = 0.

Indeed, let gw(ζ) := (ζ − w)−1h(ζ). Since w 6= 0, gw ∈ W k,p(4ε, |ζ|2), p > 4 with ε sufficiently
small and Pkgw = 0. In particular, gw ∈ Ck−1,α(4ε) for some α > 0, with |gw(ζ)| . |ζ|k−1+α near
0. Thus

lim
ε→0

∣∣∣∣∫
b4ε

h(ζ)

ζk(ζ − w)
dζ

∣∣∣∣ ≤ lim
ε→0

ε−k
∫
b4ε
|gw(ζ)|dσζ . lim

ε→0
εα = 0. (4.22)

The claim is proved. Part i) follows from the claim by letting ε→ 0 in (4.21).
For ii), let χ be a smooth function which is 1 near 0, and vanishes outside 4 1

2
. A direct

computation gives that

−2πi∂Th(0) = ∂

∫
4

χ(ζ)h(ζ)

ζ − w
dζ̄ ∧ dζ

∣∣∣∣
w=0

+ ∂

∫
4

(1− χ(ζ))h(ζ)

ζ − w
dζ̄ ∧ dζ

∣∣∣∣
w=0

=

∫
C

∂w (χ(ζ + w)h(ζ + w))

ζ
dζ̄ ∧ dζ

∣∣∣∣
w=0

+

∫
4

(1− χ(ζ))h(ζ)

ζ2
dζ̄ ∧ dζ

=

∫
C

∂ζ (χ(ζ)h(ζ))

ζ
dζ̄ ∧ dζ +

∫
4

(1− χ(ζ))h(ζ)

ζ2
dζ̄ ∧ dζ

=

∫
C

χ(ζ)h(ζ)

ζ2
dζ̄ ∧ dζ +

∫
4

(1− χ(ζ))h(ζ)

ζ2
dζ̄ ∧ dζ =

∫
4

h(ζ)

ζ2
dζ̄ ∧ dζ.

Here in the fourth line above we used Stokes’ theorem and a similar argument as in (4.22) (with
k = 1 there). Consequently with an induction,

P̃kTh = −
k−1∑
l=0

wl

2πi

∫
4

h(ζ)

ζ l+1
dζ̄ ∧ dζ.

Note that each term in the right hand side of the above is well defined due to Remark 4.4.
Making use of the following elementary identity for the Cauchy kernel:

1

ζ − w
−

k−1∑
l=0

wl

ζ l+1
=

wk

ζk(ζ − w)
, for all ζ 6= w nor 0,
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we immediately get

Th(w)− P̃kTh(w) = − w
k

2πi

∫
4

h(ζ)

ζk(ζ − w)
dζ̄ ∧ dζ = wkT

(
w−kh

)
, w ∈ 4.

Lemma 4.8. If h ∈ W 2,p(4, |w|2), p > 4, then

S∂h = ∂Sh+ S(w̄2∂̄h) on 4.

Proof. Note that h ∈ W 2,p(4, |w|2) ⊂ C1,α(4) for some α > 0. So both sides of the above equality
are actually in the strong sense. The lemma follows from a direct computation below. For w ∈ 4,

S∂h(w) =
1

2πi

∫ 2π

0

∂ζh(eiθ)ieiθ

eiθ − w
dθ =

1

2πi

∫ 2π

0

∂θ
(
h(eiθ)

)
+ i∂̄ζh(eiθ)e−iθ

eiθ − w
dθ

= − 1

2πi

∫ 2π

0

∂θ

(
1

eiθ − w

)
h(eiθ)dθ +

1

2πi

∫ 2π

0

∂̄ζh(eiθ)e−2iθ

eiθ − w
ieiθdθ

=
1

2πi

∫ 2π

0

∂w

(
1

eiθ − w

)
h(eiθ)ieiθdθ +

1

2πi

∫
b4

∂̄ζh(ζ)ζ̄2

ζ − w
dζ

=
1

2πi

∫
b4
∂w

(
1

ζ − w

)
h(ζ)dζ + S

(
w̄2∂̄h

)
= ∂Sh(w) + S

(
w̄2∂̄h

)
(w).

Proof of Proposition 4.5: In view of Lemma 4.6, we only need to prove the estimate in the propo-
sition when s ≤ k − 1. First consider the case when 0 ≤ t ≤ k − 1. For fixed w1 ∈ 4,
hw1 := ∂sw2

ũ(w1, ·) ∈ W k−s,p(4, |w2|2), Pk−shw1 = 0 by (4.15), and ∂̄w2hw1 = ∂sw2
f̃2. We apply

Lemma 4.7, part i) to hw1 and obtain

2πiw−k+s
2 ∂sw2

ũ(w1, w2) =

∫
b4

∂sζ ũ(w1, ζ)

ζk−s(ζ − w2)
dζ −

∫
4

∂sζ f̃2(w1, ζ)

ζk−s(ζ − w2)
dζ̄ ∧ dζ.

Consequently,

w−k+s
2 ∂tw1

∂sw2
ũ(w1, w2) =

1

2πi

(
∂tw1

∫
b4

∂sζ
(
ζ̄k−sũ(w1, ζ)

)
ζ − w2

dζ −
∫
4

ζ−k+s∂tw1
∂sζ f̃2(w1, ζ)

ζ − w2

dζ̄ ∧ dζ

)
=∂tw1

S2

(
∂sw2

(
w̄k−s2 ũ

))
+ T2

(
w−k+s

2 ∂tw1
∂sw2

f̃2

)
= : B1 +B2.

By (3.2) and Proposition 4.1,

‖B2‖Lp(4×4,|w2|2) .
∥∥∥T2

(
w−k+s

2 ∂tw1
∂sw2

f̃2

)∥∥∥
Lp(4×4,|w2|2)

.
∥∥∥w−k+s

2 ∂tw1
∂sw2

f̃2

∥∥∥
Lp(4×4,|w2|2)

. ‖f‖Wk,p(H) .

For B1, if s = 0, then B1 = S2

(
w̄k2∂

t
w1
ũ
)
, where w̄k2∂

t
w1
ũ ∈ W 1,p(4×4, |w2|2) as t ≤ k − 1. Then

(3.3) and Lemma 4.6 give

‖B1‖Lp(4×4,|w2|2) .
∥∥S2

(
w̄k2∂

t
w1
ũ
)∥∥

Lp(4×4,|w2|2)
.
∥∥w̄k2∂tw1

ũ
∥∥
W 1,p(4×4,|w2|2)

.‖ũ‖Wk,p(4×4,|w2|2) . ‖f‖Wk,p(H) .
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For the case s ≥ 1, since s ≤ k − 1, ∂s−1
w2

(
w̄k−s2 ũ

)
(w1, ·) ∈ W 2,p(4, |w2|2) for fixed w1 ∈ 4.

Applying Lemma 4.8 to ∂s−1
w2

(
w̄k−s2 ũ

)
(w1, ·) and using the fact that ∂̄w2ũ = f̃2, we further write

B1 =∂tw1
∂w2S2

(
∂s−1
w2

(
w̄k−s2 ũ

))
+ ∂tw1

S2

(
w̄2

2∂
s−1
w2

(
(k − s)w̄k−s−1

2 ũ+ w̄k−s2 f̃2

))
=∂w2S2

(
∂tw1

∂s−1
w2

(
w̄k−s2 ũ

))
+ (k − s)S2

(
∂tw1

∂s−1
w2

(
w̄k−s+1

2 ũ
))

+ S2

(
∂tw1

∂s−1
w2

(
w̄k−s+2

2 f̃2

))
.

Note that ∂tw1
∂s−1
w2

(
w̄l2ũ

)
∈ W 1,p(4×4, |w2|2) for l = k − s, k − s + 1, k − s + 2. By (3.6),

Proposition 4.1 and (4.17),

‖B1‖Lp(4×4,|w2|2) .
∥∥∂tw1

∂s−1
w2

(
w̄k−s2 ũ

)∥∥
W 1,p(4×4,|w2|2)

+
∥∥∂tw1

∂s−1
w2

(
w̄k−s+1

2 ũ
)∥∥

W 1,p(4×4,|w2|2)

+
∥∥∥∂tw1

∂s−1
w2

(
w̄k−s+2

2 f̃2

)∥∥∥
W 1,p(4×4,|w2|2)

.‖ũ‖Wk,p(4×4,|w2|2) +
∥∥∥f̃2

∥∥∥
Wk,p(4×4,|w2|2)

. ‖f‖Wk,p(H) .

Finally, we treat the case when t = k (and so s = 0). According to the definition of ũ,

ũ =T1f̃1 + S1T2f̃2 − T1P̃2,kf̃1 − S1P̃2,kT2f̃2

=T1f̃1 + S1

(
T2 − P̃2,kT2

)
f̃2

=T1f̃1 + S1

(
wk2T2

(
w−k2 f̃2

))
.

Here we used the fact that P2,kf̃1 = 0 by (4.3) in the second equality, and Lemma 4.7 part ii) in
the third equality for each fixed w1 ∈ 4. Consequently,

w−k2 ∂kw1
ũ =∂kw1

T1

(
w−k2 f̃1

)
+ T2

(
∂kw1

S1

(
w−k2 f̃2

))
=: C1 + C2.

For C1, by (3.4) and Proposition 4.1 (with s = 0 there),

‖C1‖Lp(4×4,|w2|2) .
k−1∑
j=0

∥∥∥w−k2 ∇j
w1
f̃2

∥∥∥
Lp(4×4,|w2|2)

. ‖f‖Wk,p(H).

For C2, by (3.4) (with k = 1 there), (3.6) and Proposition 4.1 (with s = 0 there).

‖C2‖Lp(4×4,|w2|2) .
∥∥∥∂kw1

S1

(
w−k2 f̃2

)∥∥∥
Lp(4×4,|w2|2)

.
k∑
j=0

∥∥∥w−k2 ∇j
w1
f̃2

∥∥∥
Lp(4×4,|w2|2)

. ‖f‖Wk,p(H).

The proof of the proposition is thus complete.

4.3 Proof of the main theorem

Proof of Theorem 1.1: Let Tkf := φ∗ũ + uk on H, where ũ is defined in (4.12), and uk satisfies
(4.1). Then ∂̄Tkf = f on H. To show the desired estimate for ‖Tkf‖Wk,p(H), since the anti-

holomorphic derivatives of Tkf are shifted to that of f , we only need to estimate
∥∥∂l1z1∂l2z2 (φ∗ũ)

∥∥
Lp(H)

,

l1, l2 ∈ Z+ ∪ {0}, l1 + l2 ≤ k. Note that

∂l1z1∂
l2
z2

(φ∗ũ) =
∑

s+t≤l1+l2,t≥l1

Cl1,l2,t,sz
t−l1
1 z−t−l2+s

2

(
∂tw1

∂sw2
ũ
)(z1

z2

, z2

)
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for some constants Cl1,l2,t,s dependent on l1, l2, t, s, and |z1| ≤ |z2| on H. Then by a change of
variables, ∥∥∂l1z1∂l2z2 (φ∗ũ)

∥∥
Lp(H)

.
∑

s+t≤l1+l2,t≥l1

∥∥|w2|−l1−l2+s∂tw1
∂sw2

ũ (w1, w2)
∥∥
Lp(4×4,|w2|2)

≤
∑
s+t≤k

∥∥|w2|−k+s∂tw1
∂sw2

ũ (w1, w2)
∥∥
Lp(4×4,|w2|2)

.

The rest of the proof follows from Proposition 4.5.

The following Kerzman-type example demonstrates that the ∂̄ problem on H with W k,p data
in general does not expect solutions in W k,p+ε, ε > 0, which verifies the optimality of Theorem
1.1.

Example 2. For each k ∈ Z+ and 2 < p <∞, let f = (z2−1)k−
2
pdz̄1 on H, 1

2
π < arg(z2−1) < 3

2
π.

Then f ∈ W k,p̃(H) for all 2 < p̃ < p and is ∂̄-closed on H. However, there does not exist a solution
u ∈ W k,p(H) to ∂̄u = f on H.

Proof. Clearly f ∈ W k,p̃(H) for all 2 < p̃ < p and is ∂̄-closed on H. Arguing by contradiction,
suppose there exists some u ∈ W k,p(H) satisfying ∂̄u = f on H. In particular, since 4 1

2
× (4 \

4 1
2
) ⊂ H, there exists some holomorphic function h on 4 1

2
× (4 \4 1

2
) such that u|4 1

2
×(4\4 1

2
) =

(z2 − 1)k−
2
p z̄1 + h ∈ W k,p(4 1

2
× (4 \4 1

2
)).

For each fixed (r, z2) ∈ U :=
(
0, 1

2

)
×
(
4 \4 1

2

)
⊂ R× C, consider

v(r, z2) :=

∫
|z1|=r

ũ(z1, z2)dz1.

Then with a similar argument as in the proof of Example 1, one can see that v ∈ W k,p(U). Note
that h(·, z2) is holomorphic on 4 1

2
for each fixed z2 ∈ 4\4 1

2
. Thus for fixed (r, z2) ∈ U , Cauchy’s

theorem gives

v(r, z2) =

∫
|z1|=r

z2(z2 − 1)k−
2
p z̄1dz1 = 2πr2iz2(z2 − 1)k−

2
p ,

which does not belong to W k,p(U). A contradiction!
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Fourier (Grenoble) 41(1991), no. 4, 867–882. 1

[3] Chen, L.; McNeal, J. : A solution operator for ∂̄ on the Hartogs triangle and Lp estimates. Math. Ann. 376(2020),
no. 1-2, 407–430. 2

[4] Chua, S.: Extension theorems on weighted Sobolev spaces. Indiana Univ. Math. J. 41(1992), no. 4, 1027–1076. 5, 14

[5] Chakrabarti, D.; Shaw, M.-C.: Sobolev regularity of the ∂̄-equation on the Hartogs triangle, Math. Ann. 356(2013),
no. 1, 241–258. 1

22
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