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Abstract

We study the minimal regularity required on the datum to guarantee the existence of classical
C1 solutions to the inhomogeneous Cauchy–Riemann equations on planar domains.

1 Introduction

Let Ω be a bounded domain in C with C1,α boundary, where α > 0, and let f be a (0, 1) form on Ω.
Consider the Cauchy–Riemann equations

∂̄u = f on Ω. (1)

The standard singular integral theory (see [5, Chapter 1]) implies the solvability of (1) in several
function spaces. For instance, if f ∈ Lp(Ω), 1 < p ≤ 2, then there exists a weak solution u ∈ Lq(Ω),
q < 2p

2−p to (1). Moreover, if f ∈ Lp(Ω), p > 2, then there exists a weak solution u ∈ Cγ(Ω), γ = p−2
p

.

On the other hand, if f ∈ Cα(Ω) for some 0 < α < 1, then (1) admits a classical (i.e., C1(Ω)) solution
u ∈ C1,α(Ω). The purpose of the note is to study the minimal regularity required on the datum f to
guarantee the existence of a classical solution to (1). The following example shows that continuity is
not sufficient.

Example 1.1. Consider the equation ∂̄u = fν = fνdz̄ on the disk D(0, 1
2
) := {z ∈ C : |z| < 1

2
}, where

ν > 0 is fixed and

fν(z) :=

{ z
z̄ lnν |z|2 z 6= 0

0 z = 0.
(2)

Clearly, fν ∈ C(D(0, 1
2
)). However (see the proof at the end of the paper) if ν ≤ 1, then there exists

no solution u ∈ C1(D(0, 1
2
)).

We consider the following subspaces of C(Ω) consisting of functions satisfying a logarithmic con-
tinuity condition. Similar subspaces of Cα(Ω), 0 < α < 1 with additional logarithmic continuity were
discussed in [4]. As will be seen in Corollary 3.5 and Example 3.6, such refined subspaces naturally
capture the optimal regularity of the Cauchy singular integral operator in the critical case C(Ω).
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Definition 1.2. Let Ω be a bounded domain in Rn, k ∈ Z+ ∪ {0}, ν ∈ R+. A function f ∈ Ck(Ω) is
said to be in Ck,LogνL(Ω) if

‖f‖Ck,LogνL(Ω) :=
k∑
|γ|=0

sup
w∈Ω
|Dγf(w)|+

∑
|γ|=k

sup
w,w+h∈Ω

|Dγf(w + h)−Dγf(w)|| ln |h||ν <∞.

A (0, 1) form f is said to be in Ck,LogνL(Ω) if all its components are in Ck,LogνL(Ω).

When k = 0, the space C0,LogνL(Ω) is abbreviated as CLogνL(Ω). For any k ∈ Z+ ∪{0}, 0 < ν < µ,
and 0 < α < 1, we have

Ck,α(Ω) ↪−→ Ck,LogµL(Ω) ↪−→ Ck,LogνL(Ω) ↪−→ Ck(Ω),

where every inclusion map is a continuous embedding. In our main result we prove, in particular,
that a classical solution to (1) exists whenever f is in CLogνL(Ω) for some ν > 1. Here is the precise
statement.

Theorem 1.3. Let Ω ⊂ C be a bounded domain with C1,α boundary, where α > 0. Assume that
f ∈ CLogνL(Ω) for some ν > 1. Then there exists a solution u ∈ C1,Logν−1L(Ω) to ∂̄u = f := fdz̄ such
that ‖u‖C1,Logν−1L(Ω) ≤ C‖f‖CLogνL(Ω), where C depends only on Ω and ν. In particular, u ∈ C1(Ω),

with ‖u‖C1(Ω) ≤ C‖f‖CLogνL(Ω).

Example 1.1 shows that the assumption ν > 1 in Theorem 1.3 cannot be relaxed. In this sense,
Theorem 1.3 identifies the largest possible data set guaranteeing the existence of classical solutions to
(1).

The following example shows another way in which Theorem 1.3 is sharp: the loss of 1 in the order
of Log-continuity of the solution is optimal.

Example 1.4. Let ν > 0 be fixed, and consider the equation ∂̄u = fν = fνdz̄ on the disk D(0, 1
2
),

where fν is defined by (2). Then fν ∈ CLogνL(D(0, 1
2
)). However (see the proof at the end of the

paper) if ν > 1, there does not exist a weak solution in C1,LogµL(D(0, 1
2
)) for any µ > ν − 1.

Finally, we mention that Coffman, together with the second author and the third author of this
paper, constructed in [2, Example 3.3] a (0, 1) form f ∈ C(C) such that ∂̄u = f has a solution that
fails to be in C1 near 0, yet is differentiable (i.e., it has a real linear approximation everywhere) on C.

Acknowledgements. The authors are grateful to Adam Coffman for valuable comments.

2 Preliminaries on the integral operators T and 2T

Let Ω be a bounded domain in C with C1,α boundary, where α > 0. Given a function f ∈ C(Ω),
define

Tf(z) :=
−1

2πi

∫
Ω

f(ζ)

ζ − z
dζ̄ ∧ dζ, z ∈ Ω.
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It is well known that T is a solution operator to ∂̄ on planar domains in several function spaces (see
for instance [1] and [5]). For f ∈ C(Ω), we have

∂

∂z̄
Tf = f,

∂

∂z
Tf = p.v.

−1

2πi

∫
Ω

f(ζ)

(ζ − ·)2
dζ̄ ∧ dζ =: Πf (3)

in Ω in the sense of distributions [5, Theorem 1.32]. Here p.v. represents the principal value.
In their inspiring paper [3], Nijenhuis and Woolf introduced the related integral operator 2T . For

functions f ∈ Cα(Ω), where 0 < α < 1, define

2Tf(z) :=
−1

2πi

∫
Ω

f(ζ)− f(z)

(ζ − z)2
dζ̄ ∧ dζ, z ∈ Ω.

2T is a bounded operator from the space Cα(Ω) to itself whenever 0 < α < 1 (see [3, Appendix
6.1.e] for a proof in the case of Ω being a disk, and [5, Theorem 1.32] for the general case). The next
proposition shows that 2Tf is well-defined also for functions f in Log-continuous spaces, and describes
the connection between the integral operators Π and 2T .

Proposition 2.1. Let Ω ⊂ C be a bounded domain with C1,α boundary, where α > 0. For every
f ∈ CLogνL(Ω), with ν > 1, the function 2Tf is well-defined in Ω. Moreover, letting

Ψ(z) :=
1

2πi

∫
bΩ

1

ζ − z
dζ̄, z ∈ Ω. (4)

we have
Πf(z) = 2Tf(z)− f(z)Ψ(z), z ∈ Ω. (5)

In the special case of Ω being a disk centered at 0, then

Πf(z) = 2Tf(z), z ∈ Ω. (6)

To prove Proposition 2.1 we need the two elementary lemmas below. Throughout the paper, unless
otherwise specified, we use C to represent a positive constant which depends only on Ω or ν, and which
may be different at each occurrence.

Lemma 2.2. Let Ω ⊂ C be a bounded domain with C1,α boundary, where 0 < α < 1. Then Ψ defined
in (4) is in Cα(Ω). Moreover, if Ω is a disk centered at 0, then Ψ ≡ 0 on Ω.

Proof. Write ∂Ω = ∪Nj=1Γj, where each Jordan curve Γj is connected, positively oriented with respect
to Ω, and of arclength sj. Let ζ(s) be a parameterization of bΩ in terms of the arclength s such that,
for every j, ζ|s∈[

∑j−1
m=1 sm,

∑j
m=1 sm) is a C1,α parametrization of Γj. In particular, ζ̄ ′ = 1

ζ′
6= 0 on bΩ.

For any z ∈ Ω,

Ψ(z) =
1

2πi

∫ s0

0

1

ζ(s)− z
ζ̄ ′(s)ds =

1

2πi

∫ s0

0

(ζ̄ ′(s))2

ζ(s)− z
ζ ′(s)ds =: Sf0(z).

Here f0 is a function on bΩ satisfying f0(ζ(s)) = (ζ̄ ′(s))2 for s ∈ [0, s0), and S is the Cauchy singular
integral defined by

Sf(z) :=
1

2πi

∫
bΩ

f(ζ)

ζ − z
dζ, z ∈ Ω,
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for any f ∈ C(bΩ). Consequently, f0 ∈ Cα(bΩ).
Recall that S sends Cα(bΩ) into Cα(Ω), with ‖Sf‖Cα(Ω) ≤ C‖f‖Cα(bΩ) for some constant C

dependent only on Ω (see [5, Theorem 1.10]). We then have Sf0 ∈ Cα(Ω) with

‖Ψ‖Cα(Ω) = ‖Sf0‖Cα(Ω) ≤ C‖f0‖Cα(bΩ) ≤ C.

If Ω ⊂ C is a disk centered at 0 with radius R, then using the relation ζ̄ = R2/ζ on bΩ and the
Residue Theorem, we get

Ψ(z) = − 1

2πi

∫
bΩ

R2dζ

ζ2(ζ − z)
=

{
R2( 1

z2
− 1

z2
) if z ∈ Ω, z 6= 0

0 if z = 0.

Hence Ψ ≡ 0 in Ω.

Remark 2.3. In [5, Theorem 1.32], Vekua proved Ψ ∈ Cα(Ω) by writing

Ψ(z) =
1

2πi

∫
bΩ

dζ̄

ζ − z
=

1

2πi

∫
bΩ

ζ̄dζ

(ζ − z)2
=

1

2πi

(
−
∫
bΩ

ζ̄dζ

ζ − z

)′
= −(Sz̄)′

for z ∈ Ω. Here the second identity makes use of Stokes’ Theorem. However, in order that Ψ ∈ Cα(Ω),
or equivalently Sz̄ ∈ C1,α(Ω), Vekua’s approach seems to necessarily require bΩ ∈ C2,α, instead of the
claimed C1,α boundary regularity in his theorem. By using the parameterization method as in the
proof Lemma 2.2, we were able to successfully lower that unnecessary boundary regularity assumption
to the desired C1,α.

Lemma 2.4. Let ν ∈ R+. There exists a constant C depending only on ν such that, for every choice
of h, h0 with 0 < h ≤ h0 < 1, the following hold:

1.
∫ h0
h
s−2| ln s|−νds ≤ h−1| lnh|−ν .

2. If ν > 1, then
∫ h

0
s−1| ln s|−νds ≤ C| lnh|1−ν.

Proof. 1. Integration by parts yields, when ν > 0 and 0 < h ≤ h0 < 1,∫ h0

h

s−2| ln s|−νds = h−1| lnh|−ν − h−1
0 | lnh0|−ν − ν

∫ h0

h

s−2| ln s|−ν−1ds.

In particular, ∫ h0

h

s−2| ln s|−νds ≤ h−1| lnh|−ν .

2. Direct integration gives, for ν > 1 and 0 < h < 1,∫ h

0

s−1| ln s|−νds =
1

ν − 1
| lnh|−ν+1,

which proves the second part of the lemma.
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Proof of Proposition 2.1: Fix z ∈ Ω, and let h0 be such that 0 < h0 < 1. By Lemma 2.4 part 2,

|2π
(

2Tf(z)
)
| =
∣∣∣∣∫

Ω

f(ζ)− f(z)

(ζ − z)2
dζ̄ ∧ dζ

∣∣∣∣
≤
∣∣∣∣∫
D(z,h0)∩Ω

f(ζ)− f(z)

(ζ − z)2
dζ̄ ∧ dζ

∣∣∣∣+

∣∣∣∣∫
Ω\D(z,h0)

f(ζ)− f(z)

(ζ − z)2
dζ̄ ∧ dζ

∣∣∣∣
≤C‖f‖CLogνL(Ω)

∫ h0

0

| ln s|−νs−1ds+ Ch−2
0 ‖f‖C(Ω)

≤C‖f‖CLogνL(Ω)| lnh0|−ν+1

≤C‖f‖CLogνL(Ω).

(7)

In particular, 2Tf is well-defined pointwise in Ω.
A direct computation gives

p.v.

∫
Ω

f(ζ)

(ζ − z)2
dζ̄ ∧ dζ = lim

ε→0

∫
Ω\D(z,ε)

f(ζ)

(ζ − z)2
dζ̄ ∧ dζ

= lim
ε→0

(∫
Ω\D(z,ε)

f(ζ)− f(z)

(ζ − z)2
dζ̄ ∧ dζ + f(z)

∫
Ω\D(z,ε)

1

(ζ − z)2
dζ̄ ∧ dζ

)
.

(8)

Note that ∣∣∣∣f(ζ)− f(z)

(ζ − z)2

∣∣∣∣ ≤ C‖f‖CLogνL(Ω)|ζ − z|−2| ln |ζ − z||−ν . (9)

By Lemma 2.4 part 1, the function on the right side of (9) belongs to L1(Ω). Hence the dominated
convergence theorem implies

lim
ε→0

∫
Ω\D(z,ε)

f(ζ)− f(z)

(ζ − z)2
dζ̄ ∧ dζ = −2πi

(
2Tf(z)

)
. (10)

On the other hand,∫
Ω\D(z,ε)

1

(ζ − z)2
dζ̄ ∧ dζ =

∫
bΩ

1

ζ − z
dζ̄ −

∫
bD(z,ε)

1

ζ − z
dζ̄ =

∫
bΩ

1

ζ − z
dζ̄. (11)

Here the first equality makes use of Stokes’ Theorem, and the second equality follows from Lemma
2.2. Combining (8), (10), and (11), we conclude

Πf(z) = 2Tf(z)− f(z)Ψ(z), z ∈ Ω,

which proves (5).
In the case of Ω being a disk, (6) follows from (5) together with Lemma 2.2.

3 Optimal bounds for 2T and T in Log-continuous spaces

In this section we study the boundedness of the operator 2T in the space CLogνL(Ω). We will show in
Theorem 3.4 that 2T is a bounded linear operator from CLogνL(Ω) into CLogν−1L(Ω) when ν > 1. As
a consequence, we derive our Main Theorem 1.3.

We begin by pointing out that 2T does not send C(Ω) into itself, as shown by the following example.

5



Example 3.1. Let f be the function defined on the disk D(0, 1
2
) by

f(z) =

{ z
z̄ ln |z| z 6= 0

0 z = 0.

Then f ∈ CLog1L(D(0, 1
2
)) ⊂ C(D(0, 1

2
)). However,

2Tf(0) =

∫
D(0, 1

2
)

1

|ζ|2 ln |ζ|
dζ ∧ dζ̄ = C

∫ 1
2

0

1

r ln r
dr = −∞,

and therefore 2Tf(0) is not defined. In particular, 2Tf /∈ C(D(0, 1
2
)).

The following important inequality is proved in [3].

Lemma 3.2. [3, Appendix 6.1d] Let z ∈ D(0, R) and r > 0. Then∣∣∣∣∫
D(0,R)\D(z,r)

1

(ζ − z)2
dζ̄ ∧ dζ

∣∣∣∣ ≤ 8π. (12)

Note that the disk D(z, r) may or may not be completely contained in the ambient disk D(0, R).
Moreover, the bound in (12) is independent of both R and r. The proof of Lemma 3.2 in [3] relies
on the symmetries of the disk, and unfortunately does not carry through when the disk D(0, R) is
replaced by more general domains. In the next result, using Lemma 2.2, we achieve a generalization
of Lemma 3.2 to arbitrary smoothly bounded planar domains.

Lemma 3.3. Let Ω ⊂ C be a bounded domain with C1,α boundary, where α > 0. Let z ∈ Ω and r > 0.
There exists a positive constant C depending only on Ω such that∣∣∣∣∫

Ω\D(z,r)

1

(ζ − z)2
dζ̄ ∧ dζ

∣∣∣∣ ≤ C.

Proof. Let R > 0 be such that Ω ⊂⊂ D(0, R). Since D(0, R) \D(z, r) = (D(0, R) \Ω)t (Ω \D(z, r)),
Lemma 3.2 yields∣∣∣∣∫

Ω\D(z,r)

1

(ζ − z)2
dζ̄ ∧ dζ

∣∣∣∣ =

∣∣∣∣∫
D(0,R)\D(z,r)

1

(ζ − z)2
dζ̄ ∧ dζ −

∫
D(0,R)\Ω

1

(ζ − z)2
dζ̄ ∧ dζ

∣∣∣∣
≤8π +

∣∣∣∣∫
D(0,R)\Ω

1

(ζ − z)2
dζ̄ ∧ dζ

∣∣∣∣ . (13)

By Stokes’ Theorem and Lemma 2.2,∫
D(0,R)\Ω

1

(ζ − z)2
dζ̄ ∧ dζ =

∫
bD(0,R)

1

ζ − z
dζ̄ −

∫
bΩ

1

ζ − z
dζ̄ = −

∫
bΩ

1

ζ − z
dζ̄ ∈ Cα(Ω). (14)

In particular, ∣∣∣∣∫
D(0,R)\Ω

1

(ζ − z)2
dζ̄ ∧ dζ

∣∣∣∣ ≤ C

for some constant C independent of r.
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We are now ready to prove the main theorem of this section, following the ideas in [3, Appendix,
6.1e].

Theorem 3.4. Let Ω ⊂ C be a bounded domain with C1,α boundary, where α > 0. Then 2T is a
bounded linear operator from CLogνL(Ω) into CLogν−1L(Ω), ν > 1.

Proof. Let f ∈ CLogνL(Ω) and z ∈ Ω. Let h0 be fixed with 0 < h0 <
1
2
. By (7),

|2Tf(z)| ≤ C‖f‖CLogνL(Ω).

Next, given z, z + h ∈ Ω, where |h| ≤ h0, set D0 := Ω ∩D(z, 2|h|). Then

|2Tf(z)− 2Tf(z + h)|

=

∣∣∣∣∫
Ω

f(ζ)− f(z)

(ζ − z)2
dζ̄ ∧ dζ −

∫
Ω

f(ζ)− f(z + h)

(ζ − z − h)2
dζ̄ ∧ dζ

∣∣∣∣
=

∣∣∣∣∫
Ω\D0

(f(ζ)− f(z + h))

[
1

(ζ − z)2
− 1

(ζ − z − h)2

]
dζ̄ ∧ dζ −

∫
Ω\D0

f(z)− f(z + h)

(ζ − z)2
dζ̄ ∧ dζ

+

∫
D0

f(ζ)− f(z)

(ζ − z)2
dζ̄ ∧ dζ −

∫
D0

f(ζ)− f(z + h)

(ζ − z − h)2
dζ̄ ∧ dζ

∣∣∣∣ =: |I1 + I2 + I3 + I4|.

Let γ be the segment connecting z and z + h. We can rewrite |I1| as follows:

|I1| =2

∣∣∣∣∫
Ω\D0

(f(ζ)− f(z + h))

[∫
γ

dw

(ζ − w)3

]
dζ̄ ∧ dζ

∣∣∣∣
=2

∣∣∣∣∫
γ

dw

∫
Ω\D0

f(ζ)− f(z + h)

(ζ − w)3
dζ̄ ∧ dζ

∣∣∣∣ .
Note, if ζ ∈ Ω \D0 and w ∈ γ, then |ζ − w| ≥ |ζ − z| − |z − w| ≥ |h|. Thus

|ζ − z − h| ≤ |ζ − w|+ |w − z − h| ≤ |ζ − w|+ |h| ≤ 2|ζ − w|.

Writing ζ = w + seiθ we see, in particular, that Ω \ D0 ⊂ {ζ ∈ C : |h| < s < 2R}, where R is the
diameter of Ω. By Lemma 2.4 part 1 and the fact that f ∈ CLogνL(Ω),

|I1| ≤C‖f‖CLogνL(Ω)|h|
∣∣∣∣∫ 2R

|h|
| ln s|−νs−2ds

∣∣∣∣
≤C‖f‖CLogνL(Ω)|h|

(∣∣∣∣∫ h0

|h|
| ln s|−νs−2ds

∣∣∣∣+

∣∣∣∣∫ 2R

h0

| ln s|−νs−2ds

∣∣∣∣)
≤C‖f‖CLogνL(Ω)(| ln |h||−ν + |h|)
≤C‖f‖CLogνL(Ω)| ln |h||−ν+1.

The estimate for |I2| follows directly from Lemma 3.3, and the estimate of |I3| is a straightforward
consequence of Lemma 2.4 part 2, as shown below:

|I3| ≤ C‖f‖CLogνL(Ω)

∣∣∣∣∣
∫ |h|

0

| ln s|−νs−1ds

∣∣∣∣∣ ≤ C‖f‖CLogνL(Ω)| ln |h||−ν+1.

Finally, I4 is estimated in the same way as I3.
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Combining Proposition 2.1 with Theorem 3.4, we obtain the next corollary on the solution operator
T , from which our Main Theorem 1.3 follows immediately.

Corollary 3.5. Let Ω be a bounded domain in C with C1,α boundary for some α > 0. Then T is a
bounded linear operator from CLogνL(Ω) into C1,Logν−1L(Ω), ν > 1.

Proof. Let f ∈ CLogνL(Ω). Then Πf ∈ CLogν−1L(Ω) by Proposition 2.1 and Theorem 3.4. Hence,
by (3), Tf is a continuous function whose weak derivatives are in CLogν−1L(Ω). Using a standard
mollifier argument, we further know that (3) holds pointwise in Ω, and in particular Tf ∈ C1(Ω). The
C1,Logν−1L(Ω) estimate for Tf is again a consequence of Theorem 3.4.

Example 3.1 implies that the assumption ν > 1 in Theorem 3.4 cannot be dropped. Furthermore,
the following example shows that the loss by 1 in the order of Log-continuity in Theorem 3.4 and
Corollary 3.5 is optimal in a very precise sense.

Example 3.6. Let fν be defined by (2) for some ν > 1. Then fν ∈ CLogνL(D(0, 1
2
)). However,

1. Tfν /∈ C1,LogµL(D(0, 1
2
)) for any µ > ν − 1.

2. 2Tfν /∈ CLogµL(D(0, 1
2
)) for any µ > ν − 1.

Proof. For the first statement, first check that uν = z
(1−ν) lnν−1 |z|2 satifies ∂

∂z̄
u = fν on D(0, 1

2
)) . Hence

there exists a holomorphic function h on D(0, 1
2
) such that Tfν = uν + h. In particular, Tfν has

the same regularity at z = 0 as uν , which is not in C1,LogµL near 0 for any µ > ν − 1. The second
statement is a direct consequence of the first, in view of the identity 2Tfν = ∂

∂z
Tfν on D(0, 1

2
).

Proof of Example 1.1 and Example 1.4: One can check that

uν(z) :=

{ z
(1−ν) lnν−1 |z|2 ν 6= 1

z ln(| ln |z|2|) ν = 1

is a solution to ∂̄u = fν on D(0, 1
2
). Let u be any weak solution to ∂̄u = fν on D(0, 1

2
). Then u differs

from uν by a holomorphic function, which is always smooth near 0. However, when ν ≤ 1, uν fails to
be C1 near 0. Moreover, for any µ > ν − 1 > 0, uν (and therefore u) is not in C1,LogµL near 0.
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