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Abstract
We give new characterizations of the optimal data space for the Lp(bD, σ)-Neumann

boundary value problem for the ∂̄ operator associated to a bounded, Lipschitz domain
D ⊂ C. We show that the solution space is embedded (as a Banach space) in the
Dirichlet space and that for p = 2, the solution space is a reproducing kernel Hilbert
space.

1 Introduction

Let D be a bounded Lipschitz domain in C whose boundary bD is endowed with the induced
Lebesgue measure σ. Let Hp(D) be the holomorphic Hardy space:

Hp(D) := {F ∈ ϑ(D) : F ∗ ∈ Lp(bD, σ)}, 0 < p ≤ ∞

with ϑ(D) denoting the set of holomorphic functions on D and F ∗ the non-tangential max-
imal function of F . It is well-known that if D is simply connected, every element F of
Hp(D) admits a nontangential limit Ḟ that lies in Lp(bD, σ) (see [5, Theorem 10.3]). On
the other hand, since Lipschitz domains are local epigraphs, any bounded Lipschitz domain
must be finitely connected. Hence, an elementary localization argument shows that any
F ∈ Hp(D) has a nontangential limit Ḟ defined σ-a.e. on bD. We will call the set of all
such nontangential limits hp(bD). That is,

hp(bD) :=
{
Ḟ : F ∈ Hp(D)

}
⊊ Lp(bD, σ).
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Let H1,p(D) be the holomorphic Sobolev-Hardy space

H1,p(D) := {G ∈ ϑ(D) : G′ ∈ Hp(D)}, p > 0 .

It is shown in [6] that, given g ∈ Lp(bD, σ) subject to the compatibility condition:

∫
bD

g dσ = 0,

the Neumann problem for the ∂ operator

∂̄G = 0 in D;

∂G

∂n
(ζ) = g(ζ) for σ-a.e. ζ ∈ bD;

(G′)∗ ∈ Lp(bD, σ)

(1)

is solvable if and only if the data g belongs to

np(bD) :=
{
−iT (ζ) ˙(G′)(ζ) : G ∈ H1,p(D)

}
, 1 ≤ p ≤ ∞, (2)

where ζ 7→ T (ζ) is the unit tangent vector field for bD. Moreover, if g ∈ np(bD) then all
solutions of (1) belong to H1,p(D). Any two solutions of (1) differ by an additive constant,
hence for any fixed α ∈ D the space

H1,p
α (D) := {F ∈ H1,p(D) : F (α) = 0}

contains precisely one solution of (1). In the case when p = 2 and D is simply-connected,
H1,2

α (D) is a Hilbert space with inner product

⟨F,G⟩H1,2
α (D) :=

∫
bD

˙(F ′)(ζ) ˙(G′)(ζ) dσ(ζ).

In this paper we explore properties of H1,2
α (bD) and of np(bD). Specifically, after recalling

a few well-known basic properties of Lipschitz domains (Section 2), we show that the solution
space H1,2

α (D) is a reproducing kernel Hilbert space (Theorem 3.1) and for D = D (the unit
disc) we compute its reproducing kernel. Next we show that for 1 < p <∞ there is a Banach
space embedding of H1,p

α (D) in the Dirichlet space Dp
α(D) (Theorem 3.3). In Section 4 we

give various characterizations of np(bD) for simply connected D: in terms of Lp(bD, σ)-
functions whose moments all vanish on bD; or in terms of the vanishing of the Cauchy
integral over D

c
, the complement of the closure of D; as well as in terms of its conformal
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map (Theorem 4.1 and Theorem 4.3). Finally, in Section 5 we provide a characterization
of np(bD) for multiply connected D: in this case the aforementioned vanishing moment
condition takes a more restrictive form, see Theorem 5.3.
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2 Preliminaries

2.1 Lipschitz domains

Throughout this paper the domains under consideration will be Lipschitz domains on C, as
defined below.

Definition 2.1. A bounded domainD ⊂ C with boundary bD is called a Lipschitz domain
if there are finitely many rectangles {Rj}mj=1 with sides parallel to the coordinate axes, angles
{θj}mj=1, and Lipschitz functions ϕj : R → R such that the collection {e−iθjRj}mj=1 covers bD
and (eiθjD) ∩ Rj = {x + iy : y > ϕj(x), x ∈ (aj, bj)} for some aj < bj < ∞. We refer to
such Rj’s as coordinate rectangles.

Definition 2.2. Let D be a bounded Lipschitz domain. For any ζ ∈ bD, let {Γ(ζ), ζ ∈ D}
be a family of truncated (one-sided) open cones Γ(ζ) with vertex at ζ satisfying the following
property: for each rectangle Rj in Definition 2.1, there exists two cones ∆1 and ∆2, each
with vertex at the origin and axis along the y axis such that for ζ ∈ bD ∩ e−iθjRj,

e−iθj∆1 + ζ ⊂ Γ(ζ) ⊂ Γ(ζ) \ {ζ} ⊂ e−iθj∆2 + ζ ⊂ D ∩ e−iθjRj.

It is well known that for Lipschitz D, Γ(ζ) ̸= ∅ for any ζ ∈ bD; see e.g., [4] or [12,
Section 0.4]. We will sometimes refer to Γ(ζ) as a regular cone, or a coordinate cone. For a
function F on D and ζ ∈ bD, we define the nontangential maximal function F ∗(ζ) and
the nontangential limit Ḟ (ζ) as

F ∗(ζ) := sup
z∈Γ(ζ)

|F (z)| , and Ḟ (ζ) = lim
z→ζ

z∈Γ(ζ)

F (z) if such limit exists.

We will need an approximation scheme ofD by smooth subdomains constructed by Nečas
in [10], which we refer to as a Nečas exhaustion of D. See also [8] and [12, Theorem 1.12].
(Recall that Lipschitz functions are differentiable almost everywhere; thus if D is Lipschitz
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and simply connected its boundary bD is a rectifiable Jordan curve that admits a (positively
oriented) unit tangent vector T (ζ) as σ-a.e. ζ ∈ bD.)

Lemma 2.3. [10, p. 5][12, Theorem 1.12] Let D be a bounded Lipschitz domain. There
exists a family {Dk}∞k=1 of smooth domains with Dk compactly contained in D that satisfy
the following:

(a). For each k there exists a Lipschitz diffeomorphism Λk that takes D to Dk and extends
to the boundaries: Λk : bD → bDk with the property that

sup{|Λk(ζ)− ζ| : ζ ∈ bD} ≤ C/k

for some fixed constant C. Moreover Λk(ζ) ∈ Γ(ζ).

(b). There is a covering of bD by finitely many coordinate rectangles which also form a family
of coordinate rectangles for bDk for each k. Furthermore for every such rectangle R, if
ϕ and ϕk denote the Lipschitz functions whose graphs describe the boundaries of D and
Dk, respectively, in R, then ∥(ϕk)

′∥∞ ≤ ∥ϕ′∥∞ for any k; ϕk → ϕ uniformly as k → ∞,
and (ϕk)

′ → ϕ′ a.e. and in every Lp((a, b)) with (a, b) ⊂ R as in Definition 2.1.

(c). There exist constants 0 < m < M < ∞ and positive functions (Jacobians) wk : bD →
[m,M ] for any k ∈ N, such that for any measurable set F ⊆ bD and for any measurable
function fk on Λk(F ) the following change-of-variables formula holds:∫

F

fk(Λk(η))wk(ζ) dσ(η) =

∫
Λk(F )

fk(ηk) dσk(ηk).

where dσk denotes arc-length measure on bDk. Furthermore we have

wk → 1 σ-a.e. bD and in every Lp(bD, σ) for any 1 ≤ p <∞ .

(d). Let Tk denote the unit tangent vector for bDk and T denote the unit tangent vector of
bD. We have that

Tk → T σ-a.e. bD and in every Lp(bD, σ) for any 1 ≤ p <∞ .

Note that in conclusions (b) through (d) the exponent p = ∞ cannot be allowed unless
D is of class C1. Nečas exhaustions can be used to transfer well-known results for holomor-
phic functions over domains with smooth boundaries to Hardy space functions on Lipschitz
domains. In particular, one can use it to prove Cauchy’s Theorem. See also [6, Lemma 2.7]
for the proof.
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Lemma 2.4. Let D be a bounded Lipschitz domain. Then any f ∈ h1(bD) satisfies Cauchy’s
Theorem. That is ∫

bD

f(ζ) dζ = 0 for any f ∈ h1(bD).

Next we state some definitions and results involving Cauchy integrals and the Cauchy
transform, which we first define:

Definition 2.5. Let f : bD → C. The Cauchy integral CDf of f is

CDf(z) :=
1

2πi

∫
bD

f(ζ)

ζ − z
dζ, z ∈ D.

Similarly

CD
cf(z) :=

1

2πi

∫
bD

f(ζ)

ζ − z
dζ, z ∈ D

c
.

Finally, the Cauchy transform CDf of f is denoted by

CDf(ζ) := ˙(CDf)(ζ), ζ ∈ bD.

In both integrals bD is oriented counterclockwise (that is, in the positive direction for D).

In this paper we will use the fact that a function f in Lp(bD, σ) lies in hp(bD, σ) if and
only if the Cauchy integral of f vanishes on D

c
. This latter fact is well-known for domains

with smooth boundaries; here we prove it for Lipschitz domains, see Lemma 2.6 below. We
first recall the Plemelj formulas for f ∈ Lp(bD, σ), 1 < p <∞:

CDf(ζ) =
1

2
f(ζ) +

1

2
HCbDf(ζ), for σ-a.e. ζ ∈ bD, (3)

and

lim
z→ζ

z∈Γ(ζ,Dc
)

CD
cf(z) = −1

2
f(ζ) +

1

2
HCbDf(ζ) for σ-a.e. ζ ∈ bD. (4)

Here

HCbDf(ζ) :=
1

2πi
P.V.

∫
bD

f(w)

w − ζ
dw, for σ-a.e. ζ ∈ bD,

with bD oriented counterclockwise, and Γ(ζ,D
c
) is defined as in Definition 2.2, with D in

there replaced by D
c
. Note that a Lipschitz domain D satisfies the exterior cone condition
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(see [7]) so the limit in (4) is well-defined. A deep result of Coifman, McIntosh, and Meyer
[3] states that on bounded Lipschitz domains, HCbD is indeed well-defined (i.e. the principal
value integral exists σ-a.e.) and is bounded on Lp(bD, σ), 1 < p < ∞. Thus, by the result
of [2], the Plemelj formulas (3) and (4) hold (for more on Plemelj formulas, also see [9]).

Lemma 2.6. Let D be a bounded simply connected Lipschitz domain and 1 < p < ∞.
Assume f ∈ Lp(bD, σ). Then f ∈ hp(bD, σ) if and only if CD

cf(z) = 0 for all z ∈ D
c
.

Proof. First assume that CD
cf(z) = 0 for all z ∈ D

c
. By Equation (4), we have

0 = lim
z→ω

z∈Γ(ζ,Dc
)

CD
cf(z) =

1

2πi
P.V.

∫
bD

f(ζ)

ζ − ω
dζ − 1

2
f(ω).

That is, 1
2
f(ω) = 1

2πi
P.V.

∫
bD

f(ζ)
ζ−ω

for σ-a.e. ω ∈ bD. Now, using Equation (3), we have for

σ-a.e. ω ∈ bD,

CDf(ω) =
1

2πi
P.V.

∫
bD

f(ζ)

ζ − ω
dζ +

1

2
f(ω) =

1

2
f(ω) +

1

2
f(ω) = f(ω).

Thus, f is in the range of the Cauchy transform. Since the range of the Cauchy transform
equals hp(bD, σ) when D is bounded and simply connected and 1 < p < ∞ (see [8]), the
backward direction is proven. For the forward direction suppose f ∈ hp(bD, σ). Then there
exists F ∈ Hp(D) such that Ḟ = f . Let z ∈ D

c
be arbitrary and consider the function

Gz(w) := (w − z)−1. Then Gz is holomorphic on D and is continuous on D. Moreover,
∥(FGz)

∗∥Lp(bD,σ) ≤ ∥F ∗∥Lp(bD,σ)∥G∗
z∥L∞(bD,σ) < ∞. Thus FGz ∈ Hp(D) and by Cauchy’s

Theorem (Lemma 2.4) we have

0 =

∫
bD

˙(FGz)(ζ)dζ = CD
cf(z),

as desired.

3 Properties of H1,2
α (D) for simply connected D

In this section we show that H1,2
α (D) is a reproducing kernel Hilbert space and that it is a

subset of the Dirichlet space.
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3.1 H1,2
α (D) is a reproducing kernel Hilbert space

Theorem 3.1. Let D be a bounded simply connected Lipschitz domain. Then for any base
point α ∈ D:

(a) H1,2
α (D) is a Hilbert space with inner product

⟨F,G⟩H1,2
α (D) := ⟨ ˙(F ′), ˙(G′)⟩L2(bD,σ).

(b) For any z ∈ D, the pointwise evaluation: G 7→ Ez(G) := G(z) is a bounded linear
functional on H1,2

α (D). Hence H1,2
α (D) is a reproducing kernel Hilbert space (RKHS)

with reproducing kernel Kz
α(·) = Kα(·, z). Namely, for any z ∈ D, we have that

˙(Kz
α)

′(ζ) ≡ lim
w→ζ

w∈Γ(ζ)

(Kz
α)

′(w)

exists for almost all ζ ∈ bD and for F ∈ H1,2
α (D) we have

F (z) =

∫
bD

˙(F ′)(ζ) (K̇z
α)

′(ζ) dσ(ζ), z ∈ D. (5)

(c) Let p ≥ 2 and g ∈ np(bD). Then for any α ∈ D the solution of the holomorphic
Neumann problem (1) with boundary data g has the representation

Gα(z) = i

∫
ζ∈bD

g(ζ)T (ζ) ˙(Kz
α)

′(ζ) dσ(ζ), z ∈ D.

Proof. To verify (a), note that ⟨·, ·⟩H1,2
α (D) is a sesquilinear form and ⟨F, F ⟩H1,2

α (D) = ∥F∥2H1,2
α (D)

.

A straightforward argument (whose details can be found in [6, Lemma 3.4]) shows that for
1 ≤ p ≤ ∞ the set H1,p

α (D) is a Banach space with the norm defined as

∥F∥H1,p
α (D) = ∥ ˙(F ′)∥Lp(bD,σ).

Thus H1,2
α (D) is complete under the norm ∥ · ∥H1,2

α (D), and so H1,2
α (D) is a Hilbert space.

Next we prove (b). Fix z ∈ D and consider the pointwise evaluation operator Ez. For
any α ∈ D and a smooth path γzα ⊂ D that connects α to z we have

|Ez(G)| = |G(z)| = |G(z)−G(α)| =

∣∣∣∣∣∣
∫
γz
α

G′(w)dw

∣∣∣∣∣∣ ≤ |γzα| sup
w∈γz

α

|G′(w)| .
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Furthermore, for any w ∈ γzα, Cauchy formula and Hölder inequality give

|G′(w)| = 1

2π

∣∣∣∣∣∣
∫
bD

˙(G′)(ζ)

w − ζ
dζ

∣∣∣∣∣∣ ≤ |bD| 12
2πkz

∥ ˙(G′)∥L2(bD,σ) =
|bD| 12
2πkz

∥G∥H1,2
α (D),

where kz := dist(γzα, bD) > 0. Combining all of the above we see that for any z ∈ D, Ez is a
bounded linear functional on H1,2

α (D); Hilbert space theory now grants the existence of the
reproducing kernel function

Kz
α ∈ H1,2

α (D) with G(z) = ⟨G,Kz
α⟩H1,2

α (D).

Finally we verify (c). Let p ≥ 2 and g ∈ np(bD). Suppose Gα ∈ H1,p
α (D) is the solution

to the Neumann problem (1) with datum g. Thus ˙(G′
α) = iTg and Gα ∈ H1,2

α (D). Hence
for any z ∈ D we have

Gα(z) = ⟨Gα, K
z
α⟩H1,2

α (D) =

∫
bD

˙(G′
α)(ζ)(K̇

z
α)

′(ζ)dσ(ζ) = i

∫
bD

g(ζ)T (ζ)(K̇z
α)

′(ζ)dσ(ζ),

as desired.

In the case of the unit disc D we obtain explicit formulas and recover the full range of
1 ≤ p ≤ ∞:

Theorem 3.2. 1. The reproducing kernel associated to H1,2
α (D) is given by

Kz
α(w) =

∞∑
k=1

(wk − αk)(zk − αk)

2πk2
, z, w ∈ D. (6)

2. Given g ∈ np(bD), 1 ≤ p ≤ ∞ and α := 0, the unique solution G ∈ H1,p
0 (D) to the

holomorphic Neumann problem (1) admits the following representation

G(z) =
1

2π

∫
bD

g(ζ)Log
1

1− zζ
dσ(ζ), (7)

where Log denotes the principal branch of the complex logarithm.
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Proof. To prove part 1., note that since D is simply connected every holomorphic function
on D has an antiderivative. Thus the mapping G 7→ G′ is an isometric isomorphism from
H1,2

α (D) onto H2(D). Since { 1√
2π
zk−1}k∈N is an orthonormal basis of H2(D), the set of

antiderivatives { zk−αk
√
2πk

}k∈N is an orthonormal basis of H1,2
α (D). Thus, by the theory of

reproducing kernel Hilbert spaces, Kα as given in Equation (6) is the reproducing kernel for
H1,2

α (D).
For the proof of part 2., note that the reproducing kernel for D satisfies

(Kz
0 )

′(w) =
∂

∂w

∞∑
k=1

zkwk

2πk2
=

∞∑
k=1

zkwk−1

2πk
=

1

2πw
Log

1

1− zw
, w ∈ D.

Hence for every ζ ∈ bD, and since T (ζ) = iζ, we have

T (ζ) ˙(Kz
0 )

′(ζ) =
1

2πi
Log

1

1− zζ
, ζ ∈ bD.

So for g ∈ n2(bD) we have that Equation (7) follows from the above and Theorem 3.1 part
(c).

For g ∈ np(bD), 1 ≤ p ≤ ∞, define G as in (7). Then G ∈ ϑ(D) and

G′(z) =
1

2π

∫
bD

g(ζ)ζ̄

1− zζ
dσ(ζ) =

1

2π

∫
bD

g(ζ)

ζ − z
dσ(ζ) =

1

2πi

∫
bD

iT (ζ)g(ζ)

ζ − z
dζ = CD(iTg)(z), z ∈ D.

Here we used the facts that ζζ̄ = 1 and dσ(ζ) = T (ζ)dζ on D. Consequently, (G′)∗ ∈
Lp(bD, σ) by the mapping property of the Cauchy integral CD and Cauchy transform CD.
Moreover, from the above we also have that

˙(G′)(ζ) = CD(iTg)(ζ), a.e. ζ ∈ bD.

But Tg ∈ hp(bD) because g ∈ np(bD), and CD is the identity on hp(bD), thus

∂G

∂n
(ζ) = −iT (ζ) ˙(G′)(ζ) = −iT (ζ)CD(iTg)(ζ) = g(ζ), ζ ∈ bD σ − a.e..

That is, G solves (1) for 1 ≤ p ≤ ∞. (Uniqueness was proved in [6].)
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3.2 H1,p
α (D) is embedded in the Dirichlet Space

In [1], Axler and Shields introduced the Dirichlet space D2
α(D) for a general domain D,

namely

D2
α(D) :=

F ∈ ϑ(D) : F (α) = 0,

∫
D

|F ′|2 (z) dV (z) <∞

 , α ∈ D,

which is a Hilbert space with inner product

⟨F,G⟩D2
α(D) :=

∫
D

F ′(z)G′(z) dV (z).

(Here dV is the Lebesgue measure for C.) The analogous definition ofDp
α(D) with 1 ≤ p ≤ ∞

yields a Banach space with norm

∥F∥Dp
α(D) :=

∫
D

|F ′(z)|p dV (z).

Theorem 3.3. Let D be a bounded simply connected Lipschitz domain and 1 < p < ∞.
Suppose that F ∈ H1,p

α (D). Then F ∈ Dp
α(D) and

∥F∥Dp
α(D) ≲ ∥F∥H1,p

α (D).

That is, the holomorphic Sobolev-Hardy space is embedded in the Dirichlet space.

To prove Theorem 3.3 we need the following result:

Lemma 3.4. Let D be a bounded simply connected Lipschitz domain and 1 < p < ∞.
Suppose that F ∈ Hp(D). Then F ∈ ϑ(D) ∩ Lp(D) and

∥F∥Lp(D) ≲ ∥Ḟ∥Lp(bD,σ).

That is, the holomorphic Hardy space is embedded in the Bergman space.

Proof. In [6, Lemma 2.8] it is shown that if 1 < p < ∞ and D is a simply connected and
bounded Lipschitz domain, then for F ∈ Hp(D) quantities ∥F ∗∥Lp(bD,σ) and ∥Ḟ∥Lp(bD,σ) are
comparable. Thus it suffices to show that ∥F∥Lp(D) ≲ ∥F ∗∥Lp(bD,σ).

Consider a Nečas exhaustion {Dk} of D. Then there are finitely many coordinate
rectangles Rj := [aj, bj] × (cj, dj) with Lipschitz functions ϕj

k and ϕj whose graphs de-
termine Dk and D, respectively, on Rj and ϕj

k converges uniformly to ϕj. For any k ∈ N,
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x ∈ [aj, bj] and y ∈
(
ϕj(x), ϕj

k(x)
]
, the point x + iy lies directly above x + iϕj(x) and thus

x+ iy ∈ ∆1 + (x+ iϕj(x)), where ∆1 is the cone in Definition 2.2. And so e−iθj(x+ iy) lies
in e−iθj(∆1 + (x + iϕj(x))) ⊆ Γ(e−iθj(x + iϕj(x))). Fix k ∈ N so that for each j we have
∥ϕj

k − ϕj∥∞ < 1. Then we have for F ∈ Hp(D)∫∫
D−Dk

|F (z)|pdA(z) ≤
∑
j

∫∫
e−iθjRj∩(D−Dk)

|F (z)|pdA(z)

=
∑
j

bj∫
aj

ϕj
k(x)∫

ϕj(x)

|F (e−iθj(x+ iy))|pdydx

≤
∑
j

bj∫
aj

ϕj
k(x)∫

ϕj(x)

F ∗(e−iθj(x+ iϕj(x)))
pdydx

≤
∑
j

bj∫
aj

F ∗(e−iθj(x+ iϕj(x)))
pdx

≤
∑
j

bj∫
aj

F ∗(e−iθj(x+ iϕj(x)))
p
∣∣eiθj(1 + iϕ′

j(x))
∣∣ dx

=
∑
j

∫
bD∩e−iθjRj

F ∗(ζ)pdσ(ζ) ≲ ∥F ∗∥pLp(bD,σ).

Since Dk is compactly contained in D and k is fixed, dist(Dk, bD) > d for some constant d
depending on D. So, similar to the argument of the proof of part (b) of Theorem 3.1, by
the Cauchy integral formula we have∫∫

Dk

|F (z)|pdA(z) ≲ ∥F ∗∥pLp(bD,σ),

completing the proof to ∥F∥Lp(D) ≲ ∥F ∗∥Lp(bD,σ).

Proof of Theorem 3.3. Let F ∈ H1,p
α (D). Then F (α) = 0 and F ′ ∈ Hp(D). By Lemma 3.4,

we also have F ′ ∈ ϑ(D) ∩ Lp(D) giving that F ∈ Dp
α(D), as desired.
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4 Characterizations of np(bD) for simply connected D

Theorem 4.1. Let D be a bounded simply connected Lipschitz domain and 1 ≤ p ≤ ∞.
Then np(bD) defined as in (2) is closed in the Lp(bD, σ)-norm. Moreover, for

n1 := {Tg : g ∈ hp(bD)},

n2 :=

f ∈ Lp(bD, σ) :

∫
bD

ζkf(ζ)dσ(ζ) = 0 for all k = 0, 1, 2, . . .

 ,

n3 :=
{
f ∈ Lp(bD, σ) : CD

c(Tf) = 0
}

we have that np(bD) = n1 = n2. If 1 < p <∞, then we also have np(bD) = n3.

Proof. The inclusion np(bD) ⊆ n1 is immediate from (2). The reverse inclusion holds because
D is simply connected and thus all holomorphic functions on D have antiderivatives. As
hp(bD) is closed in the Lp(bD, σ)-norm, we see that n1, and thus np(bD) is also closed. Next,
the identity np(bD) = n2 follows from the fact that T (ζ)dσ(ζ) = dζ and the well-known result
of Smirnov that g ∈ Lp(bD, σ) lies in hp(bD) if and only if∫

bD

ζkg(ζ)dζ = 0 for k = 0, 1, 2, . . .

See, for example, [5, Theorem 10.4]. Finally, the identity np(bD) = n3 for 1 < p <∞ follows
from Lemma 2.6.

We may also characterize the elements of np(bD) for a bounded simply connected Lip-
schitz domain D via its Riemann maps. We shall need the following description of the
tangent vector.

Lemma 4.2. Let D be a bounded simply connected Lipschitz domain and ψ : D → D be a
conformal map. Then the tangent vector T of bD (which is defined a.e.) can be written as

T = i
˙(ψ′)

| ˙(ψ′)|
ψ̇, σ-a.e. on bD.

Proof. Let ϕ : D → D be defined as ϕ = ψ−1. Since bD is Lipschitz, it is a Jordan curve so by
Carathéodory’s theorem ϕ extends to a homeomorphism of D onto D. By [5, Theorem 3.13],

we have that ϕ′ ∈ H1(D) so that ˙(ϕ′) exists σ-a.e., ϕ is absolutely continuous on bD, and

d

dt
ϕ(eit) = ieit ˙(ϕ′)(eit). (8)
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Thus we can write the unit tangent vector T via ˙(ϕ′) for almost all ζ ∈ ∂D. To do so, first
note that for r < 1

ψ′(ϕ(reit)) =
1

ϕ′(reit)
.

Since ϕ is conformal and ˙(ϕ′) exists and is nonzero a.e., we see that the nontangential limit
˙(ψ′) exists a.e. and satisfies

˙(ψ′)(ζ) =
1

˙(ϕ′)(ψ(ζ))
. (9)

Choose t0 so that ζ = ϕ(eit0). Then by Equations (8) and (9) we have

T (ζ) =
d
dt
ϕ(eit)

| d
dt
ϕ(eit)|

∣∣∣∣∣
t=t0

=
˙(ϕ′)(eit0)ieit0

| ˙(ϕ′)(eit0)|
= i

˙(ϕ′)(ψ(ζ))ψ(ζ)

| ˙(ϕ′)(ψ(ζ))|
= i

| ˙(ψ′)(ζ)|ψ(ζ)
˙(ψ′)(ζ)

σ-a.e.,

as desired.

Theorem 4.3. Let D is a bounded simply connected Lipschitz domain, and 1 ≤ p ≤ ∞. Let
ψ : D → D be a conformal map with α := ψ−1(0) ∈ D. Then

np(bD) =

{
˙(ψ′)

| ˙(ψ′)|
Ḟ : F ∈ Hp(D), F (α) = 0

}
.

Proof. First by Proposition 4.1, one has

np(bD) =
{
TĠ : G ∈ Hp(D)

}
.

Making use of Lemma 4.2, we further obtain

np(bD) =

{
˙(ψ′)

| ˙(ψ′)|
ψ̇Ġ : G ∈ Hp(D)

}
.

Note that ψ is conformal on D and continuous on D. In particular, ψ has only one zero at
α and that zero is simple. Letting F := ψG, then

G ∈ Hp(D) if and only if F ∈ Hp(D), F (α) = 0.

The proof is complete.

Note that for D = D we can choose ψ(z) = z, in which case Theorem 4.3 takes an
especially simple form, namely

np(bD) = {Ḟ : F ∈ Hp(D), F (0) = 0}.
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5 A characterization of np(bD) formultiply connectedD

Let D be a bounded Lipschitz domain. Then there exists N ≥ 1, such that the boundary
bD consists of N closed rectifiable curves. Here and throughout we denote by γ1, γ2, . . . , γN
those closed curves of bD endowed with the positive orientation, with γN denoting the outer
curve of bD (that is, D lies in the set of points inside of γN).

In order to characterize np(bD) we need to understand which elements of Hp(D) admit
holomorphic antiderivatives. According to classical complex analysis theory, a continuous
complex-valued function has an antiderivative in a domain D (which may be simply or
multiply-connected) if and only if the line integral of the function along every closed contour
(i.e. piecewise C1 path) in D is zero. See, for instance, [11, Thereom 6.44]. This leads us to
the following:

Proposition 5.1. Let D be a bounded Lipschitz domain and let the boundary of D be denoted
as above. For 1 ≤ p ≤ ∞ and F ∈ Hp(D) we have that F is the complex derivative of a
holomorphic function on D if and only if∫

γj

Ḟ (ζ)dζ = 0 for all j = 1, . . . , N . (10)

Proof. Let {Dk} be Nečas exhaustion ofD as defined in Lemma 2.3. We will use the notation
of Lemma 2.3 throughout this proof. For each k and 1 ≤ j ≤ N , let γkj denote portion of
bDk such that Λk(γ

k
j ) = γj.

First, assume F is a derivative of a holomorphic function on D. For each k the curve γkj
is a closed contour in D. Thus, by the Fundamental Theorem of Calculus, we have∫

γk
j

F (ζ)dζ = 0, j = 1, . . . , N.

Thus

0 = lim
k→∞

∫
γk
j

F (ζ)dζ = lim
k→∞

∫
γk
j

F (ηk)Tk(ηk)dσk(ηk)

= lim
k→∞

∫
γj

F (Λk(η))Tk(Λk(η))wk(η)dσ(η) =

∫
γj

Ḟ (η)T (η)dσ(η) =

∫
γj

Ḟ (ζ)dζ,

where we used the Dominated Convergence Theorem with the dominating function M |F ∗|
(here we are using the fact that F ∈ Hp(D) so that F ∗ ∈ L1(bD, σ)), obtaining (10).
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Conversely, assume (10) holds. Fixing a point a ∈ D, we shall show that for any z ∈ D,
and any contour η in D connecting a and z, the following line integral∫

η

F (ζ)dζ

is independent of the choice of the path.
Indeed, let η1 and η2 be two contours joining a and z and let β = η1∪(−η2) be the closed

contour starting and ending at a (here −η2 is η2 oriented in the opposite direction). Without
loss of generality, suppose β is oriented counterclockwise and has no self-intersections. If
the domain bounded by β is a subset of D, then

∫
β
F (ζ)dζ = 0 by Cauchy’s theorem. Else,

for some m between 1 and N there are m components of bD, say, γ1, . . . , γm, that lie inside
the domain bounded by β, while the remaining components γm+1, . . . , γN lie outside of such
domain. With same notation as before, for a Nečas exhaustion {Dk}, we choose k large
enough so that Dk contains β, γk1 , . . . , γ

k
m lie inside of β, and γkm+1, . . . , γ

k
N lie outside of β.

By a generalized version of Cauchy’s theorem (see, for example, [11, Thereom 8.9]),∫
β

F (ζ)dζ =
m∑
ℓ=1

∫
γk
ℓ

F (ζ)dζ for any large k.

By an argument similar to the proof of Equation (11) we have∫
β

F (ζ)dζ = lim
k→∞

m∑
ℓ=1

∫
γk
ℓ

F (ζ)dζ =
m∑
ℓ=1

∫
γℓ

Ḟ (ζ)dζ = 0,

where we used (10) in the last equality. Equivalently,∫
η1

F (ζ)dζ =

∫
η2

F (ζ)dζ,

thus

H(z) :=

∫
η

F (ζ)dζ

is well defined and is a holomorphic antiderivative of F on D.

Remark 5.2. By Cauchy’s theorem (in Lemma 2.4), we have

N∑
j=1

∫
γj

Ḟ (ζ)dζ =

∫
bD

Ḟ (ζ)dζ = 0,
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for any F ∈ Hp(D). Then we can refine the statement of Proposition 5.1 by requiring that
only (N −1)-many terms in Equation (10) vanish. Without loss of generality, we choose the
first (N − 1) terms. Hence, Equation (10) is equivalent to∫

γj

Ḟ (ζ)dζ = 0 for all j = 1, . . . , N − 1. (11)

Theorem 5.3. Let D be a bounded Lipschitz domain and 1 ≤ p ≤ ∞. Then with np(bD)
as in (2) we have

np(bD) =

Tf : f ∈ hp(bD),

∫
γj

f(ζ) dζ = 0, 1 ≤ j ≤ N − 1

 . (12)

If D is simply connected then the above identity reads np(bD) = n1, see Theorem 4.1
(we should perhaps point out that the congruence of np(bD) with the two spaces n2 and n3
proved therein relies upon results that are classically stated for simply connected D).

Proof. Let

Lp
0(bD, σ) :=

g ∈ Lp(bD, σ) :

∫
bD

g(ζ)dσ(ζ) = 0


and

Lp
00(bD, σ) :=

g ∈ Lp(bD, σ) :

∫
γj

g(ζ)dσ(ζ) = 0, 1 ≤ j ≤ N

 .

Obviously Lp
00(bD, σ) ⊂ Lp

0(bD, σ). We claim that

np(bD) = {g ∈ Lp
00(bD, σ) : Tg ∈ hp(bD)}. (13)

Indeed, if g ∈ np(bD) there exists a G ∈ ϑ(D) with G′ ∈ Hp(D) such that g = −iT ˙(G′), see

(2); hence T̄ g = −i ˙(G′) ∈ hp(bD). Moreover Proposition 5.1 gives that∫
γj

g(ζ)dσ(ζ) = −i
∫
γj

˙(G′)(ζ)dζ = 0, j = 1, . . . , N − 1
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proving that g ∈ Lp
00(bD, σ) and concluding the proof of the forward inclusion. For the

reverse inclusion, suppose g ∈ Lp
00(bD, σ) and g = T Ḟ for some F ∈ Hp(D). Then∫

γj

Ḟ (ζ)dζ =

∫
γj

g(ζ)dσ(ζ) = 0, j = 1, . . . , N − 1

and it follows from Proposition 5.1 and Equation (11) that F has an antiderivativeG ∈ ϑ(D).

Note that iG ∈ H1,p(D) by definition. Thus, g = T Ḟ = −iT ( ˙iG′) ∈ np(bD). The proof
of (13) is concluded. Equation (12) now follows since for g as above we have g = Tf with
f := Tg.
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