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Abstract

This paper is motivated by a claim in the classical textbook of Muskhelishvili con-
cerning the Cauchy singular integral operator .S on Hoélder functions with parameters.
To the contrary of the claim, a counter example was constructed by Tumanov which
shows that S with parameters fails to maintain the same Holder regularity with re-
spect to the parameters. In view of the example, the behavior of the Cauchy singular
integral operator with parameters between a type of Log-Holder spaces is investigated
to obtain the sharp norm estimates. At the end of the paper, we discuss its application
to the O problem on product domains.

1 Introductions

Let D be a bounded domain in C, A be (the closure of) an open set in R or C and §2 := D x A.
In particular, D consists of a finite number of C%* Jordan curves possessing no points in
common. Given a complex-valued function f € C*(12), define the Cauchy singular integral
along the slice D as follows. For any (z,\) € €,

Sf(z,A) = L Mdg. (1)

2 Jap (— 2

(Classical singular integral operators theory in one complex variable states that, there exists
a constant C' dependent only on © and «, such that Sf(-,\) € C*(D) for each X\ € A, and
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(See for instance [7][11] et al.) It is plausible to ask whether S in (1) is a bounded linear
operator in C*(2). The question was claimed to be true by Muskhelishvili (see [7] p. 49-50).
In fact, Muskhelishvili’s proof only shows that given any arbitrarily small € with 0 < € < o
S is bounded sending C'*(2) into C*~¢(12).

To the contrary of Muskhelishvili’s claim, Tumanov [8] (p. 486) constructed a concrete
example showing that S with parameters fails to maintain the same Holder regularity with
respect to the parameters. In order to study the optimal parameter dependence of S in
(1) on A, we introduce the following Log-Holder spaces, which are considered as refined
Holder spaces and would naturally capture the boundedness of the Cauchy singular integral
operator.

Definition 1.1. Let Q be a domain in R", k € ZT U {0}, 0 < o < 1 and v € R. A function
f € CF(Q) is said to be in C*L7Lod"L(Q) if

K , .
I fllcrrorosrigy ==Y sup [DYf(w)[+ > sup | D7 f(w+h) — DV f(w)] < oo
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Note that when o = 1 and v < 0, CHE*Lo9"L(Q) consists of constant functions only
and thus becomes trivial. Without loss of generality, we always assume v > 0 if « = 1 in

the rest of the paper. It can be verified that C*£*L°9"L(Q)) is a Banach space. Moreover,

for any pu,v € Rtk € Z* U{0},0 < € < a < 1, Chote(Q) <& R Los " L(Q) <&
CRLLog™"L(Q) < CRa(Q) = CRELo"L(Q) 5 CRELog™™L(Q) < CRe=¢(Q), where the
inclusion map i at each level is a continuous embedding. The Log-Holder space C*17 109”1 ((Q))
reduces to the well-understood Log-Lipschitz space C’k’LlLogL(Q) when k =0and v = a =1,

and to Holder space C*(€) when v = 0. Our main theorem stated below shows that S is a
bounded operator from C*LLos"L(Q)) into CRE Lo L(Q) ke ZT U{0},0 < a < 1,v € R.

Theorem 1.2. Let D be a bounded domain in C with C** boundary, k € ZTU{0},0 < a <
1, A be an open set in R or C, and Q := D x A. Then S defined in (1) sends C*L"Lo9"L(())
into CFLLos" ' L(Q)) "y e R. Moreover, for any f € CHELos"L(Q),

||S.f||ck,LaLog“+1L(Q) S O||f||ck,Lo‘LogVL(Q)’
where C' is some constant dependent only on Q, k,a and v.

In view of Tumanov’s example, Theorem 1.2 is optimal in the sense that the target space
CFLLog" ' L(Q)) can not be replaced by C*L*Los”™L(Q) for any u < 1. As an application of
the theorem, we study solutions in Log-Holder spaces to the 0 problem on product domains,
improving the regularity result of [9].



Theorem 1.3. Let D; C C,j = 1,...,n, be bounded domains with C**1* boundary,
n>2kecZ"U{0},0<a<1l, andQ:= Dy x---xD,. Assumef = 3" fidz; €
ChELos"L(Q) v € R, is a O-closed (0,1) form on Q (in the sense of distributions if k =0).
There exists a solution operator T to u = f such that Tf € CHL Led” ™" 'L(Q) OTf = f (in
the sense of distributions if k = 0) and || Tf|| r.porogin-1q) < Clflorrorosr(g), where C
depends only on Q, k,« and v.

We would like to point out, unlike smooth domains, there is no gain of regularity phe-
nomenon for the 0 problem on product domains, as indicated by an example of Stein and
Kerzman [4] in L™ space (See also [9] for examples in Holder spaces). One can similarly
construct examples to show that the O problem on product domains does not gain regularity
in Log-Holder spaces as follows. On the other hand, the well-known uniform estimates of
solutions on product domains (see [2][10] etc.) suggest that the same regularity as that of the
data could be expected. This may be an interesting problem to look for optimal solutions
to the & problem on product domains in Holder (Log-Holder) spaces.

Example 1.4. Let A? = {(21,22) € C* : |z1] < 1,]2| < 1} be the bidisc. For each
k € ZTU{0},0 < « < 1 and v € R, consider Ju = f := 9((z; — 1)z, log”(z; — 1)) on A2,
im <arg(z1 —1) < 3m. Then f = (21 — 1)F**log” (2 — 1)dz, € CHEE9"L(A?) is a d-closed
(0,1) form. However, there does not exist a solution u € C*L’Log"L(A2) to Ju = f for any
£ with g > a.

The rest of the paper is organized as follows. In Section 2, preliminaries about the
function spaces and (semi-)norms are defined, as well as the classical theory about the
Cauchy type integrals. The example of Tumanov is discussed in Section 3 to show that S
does not send C*(A?) into itself, 0 < a < 1. Section 4 is devoted to the boundedness of
the Cauchy singular integral operator between Log-Holder spaces on the complex plane. In
Section 5 and Section 6, Theorem 1.2 and Theorem 1.3 are proved respectively, along with
the verification of Example 1.4.

Acknowledgement: The authors are grateful to the anonymous referee for valuable re-
marks.

2 Preliminaries and Notations

Throughout the rest of the paper, k, u, v and « are always referred to (part of ) the indices of
the Log-Holder spaces. v may represent either a positive integer or an n-tuple, determined
by the context. C represents a constant that is dependent only on €2, k, v and «, which may
be of different values in different places.



For convenience of notations, given f € CHL"L¢"L(Q))  denote by

k
Ifllexey = > sup| D" (w)

we
[v|=0

and the semi-norm

Hu[f] — sup |f(w+h)_f(w)|
w,w+heN,0<|h|<] |A]* [ [A]]~

Here « is suppressed from the above notation due to a fixed value of o throughout the paper.
When v = 0, we also suppress v and write H[-] for H°[-]. Consequently, || f||ck.corosz () =
[ fllex @) + 22 = HY[DV 1.

It is worth noting that the upper bound 3 of || under the supreme for H"[f] is not es-
sential. It can be replaced by any positive number less than 1 without changing the function
space CHE7Log"L(()) and the resulting norm is equivalent by some constant dependent only
on D, «, v and the positive number itself.

In particular when Q = D x A, the Holder semi-norms along z and A variables for each
fixed A € A and fixed z € D respectively can be defined as follows.

[f(C+hA) = F(GA)

Hy [f(7 )\)] = sup ;
"’ ¢,(+heD,0<|h|<L |h|e| In |h||¥
1f(z,{+h) = f(z.0)
Hy[f(z7 )] = sup .
! ¢,CH+heA0<|h|<L |h|| In | A||¥

The above two expressions are clearly bounded by H”[f] by definition. On the other hand,
the following elementary property for Log-Holder semi-norms can be observed.

Lemma 2.1. There exists a constant C' dependent only on Q,a and v, such that for any
function f € CL Lod"L(Q),

Il sersiey < Ol + sup HB [, )]+ sup HF [z, -)).

Proof. We only need to show H"[f] < C(|| fllc) +suprea Hp[f (-, A)] +sup.cp H[f(z,-)])-
Indeed, for any w = (2,A) € D x A,w+ h = (2 + h;, A\ + hy) € D x A with |h| < rg =
min{e~ =, 3}, then (2 + k1, A) € D x A. Hence
|f(w+h)— f(w)] <|f(z+hi, A+ ha) — f(z+hi, )|+ [ f(z+ hi, A) — f(z,))]
< [ha|*[In [hol|” sup HX[f (2, -)] 4 [ha|*[In [ [|” sup Hp[f (-, A)]
2€D AEA

< [BI"| 1 A]|*(sup H (- V)] + sup H (=)

z€D
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Here the last inequality is due to the non-decreasing property of the real-valued function
s%|In s|” on the interval (0,r). |

Let D be a bounded domain in C with C**"* boundary, k € Z*U{0},0 < o < 1. Given
a complex valued function f € C(D), the following two operators related to the Cauchy
kernel are well defined for z € D.

Tf(z):= 2_—732 D%d(/\d(;
A @

Sf(z):=—

" 2mi ap C— 2

dc.

Here the positive orientation of dD is such that the domain D is always to its left while
traversing along the contour(s). We state some classical results concerning the Cauchy type
integrals 7" and S on the complex plane. The reader may check for instance [11] for reference.

Theorem 2.2. Let D be a bounded domain with C**1% boundary.
1)If fel”(D),p>2 then Tf e C¥D),a= ’%2. Moreover,

1T fllcapy < ClI fller,

for some constant C dependent only on D and p.
2) If f € C**(D),k € Z* U{0},0 < a < 1. Then Tf € C*1%(D) and Sf € C**(D).
Moreover,

| T fllckrrepy < Cll fllerany;
1S fllerapy < Cllfllerap

for some constant C' dependent only on D,k and a.

3 S does not send C*(A?) into itself

In this section, we verify in detail Tumanov’s example in [8] (See also [6]) that S defined in
(1) does not send C*(A?) into itself, 0 < a < 1. Define for A € A,

A, =7 <0< —|A[3;

Fei - d 0 —ME<o<0;
MEN=Y ] g<o<p:
AP, <<



Then f € C*(OA x A). Extend f onto A% denoted as f, such that f € C*(A?) and
Iflloeazy = | fllca@axa). (For instance, for each w € A?, let f(w) := infyeanxa{f(n) +
Mlw —n|*}, where M = || fllce(paxn)-)

We first show that Sf(1,-) ¢ C%(A). Indeed, a direct computation gives for A € A,

10
0%

Here the third equality uses the identity that ¥ — 1 = cos — 1 +isin @ = 2isin 5€
f e C¥0A x A), we have IT € C*(A).
On the other hand, write

. Since

™ ‘]F(ezH’ /\)
0

(" - . 0 2
I=- f(e® N (cot = — =

)do + de.

2 2 0

-

Notice that cot g—% extends as a continuous function on [—m, 7). Hence f:r f(e? X)(cot g —

2)d§ € C*(A) as a function of A € A. For the second term in I, from construction of 1

T f~(€i0’)\> _/0 6204 /|)\ He /|)\|% |)\’a
/_7r 7 df = o 7 do + ; 9d9+ N 7 do

AP
2x

We thus obtain I ¢ C*(A) and hence Sf(1,-) ¢ C(A).

Suppose by contradiction that Sf € C*(A?). Then the non-tangential limit of Sf on
0N x A, denoted by @f, is in C* as well. In particular, ®f(1,-) € C*(A). On the other
hand, by Sokhotski-Plemelj formula, ®f(1,-) = Sf(1,:) + %f(l, -). This contradicts with
the fact that Sf(1,-) ¢ C*(A).

Remark 3.1. For f constructed above, Sf ¢ CL*Lo9"L(A2) for any u < 1.

1
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4 Cauchy singular integral in Log-Holder spaces in C

Let D be a bounded domain in C with C* boundary, k € ZT U {0},0 < a < 1. In this
section, we shall prove that S defined in (2) is a bounded linear operator from C**%°9"L( D)
into itself if 0 < a < 1, and into CX' 29" "' L(D) if @ = 1 (and v > 0). Since CE"L9"L(D) is
a subspace of C¢(D) for 0 < € < a, Sf is well defined for f € CL"L°9"L(D) by the classical
theory of S in Holder spaces.

Write 0D = Ué\f:lfj, where each Jordan curve I'; is connected and positively oriented
with respect to D, and of total arclength s;. Since 9D is Lipschitz in particular, D satisfies
the so-called chord-arc condition. In other words, for any ¢, € I';,j = 1,..., N, let |t, 1]
be the smaller length of the two arcs of I'; with ¢ and ¢’ as the two end points. There exists
a constant ¢y > 1 dependent only on 0D such that

=t < 1] < colt — ¢ (3)
The following calculus lemma is elementary but will be frequently used in this section.

Lemma 4.1. Let 0 < o < 1 and v € R. There exists a constant C' dependent only on «
2v 2v 1

and v, such that for all 0 < h < hy := min{e™ =, eT-a, 5},
1) foh s* HIns|"ds < Ch¥|Inh|” when 0 < a < 1.

ho o y Cho=YInhlY, 0<a<1;
2) [ s2=2| In | dsg{ C’|ln’h\”+1’ o

Proof. 1) Using integration by part directly,

" I 1 v "
/ s Ins|"ds = —/ |Ins|Vds® = —h®|Inh|” + —/ s In s|"*ds.
0 @ Jo @ @ Jo

If v <0, the lemma follows directly from the above identity by dropping off the last negative

term. If v > 0, since s < hy < ea", 1 — ot 2 5, which implies foh s* HIns|Vds —
ifoh s* Hins|"lds = foh s* Hlns“(1 - ATt )ds = %foh s* 1 In s|”ds. Hence

" 2
/ s Ins|Vds < =h*|Inh|".
0 a

2) When 0 < v < 1,

ho 1 v ho
/ 52| Ins|"ds = (R Inh|” — h§ | In hol”) — / 52| Ins|""'ds.
h 1 — Q@ Jn

— o 1



So we have

ho 1 v ho
/ s ?|Ins|"ds < ——h* YInhl¥ — / 52| Ins|" " 'ds.
h 1l —« 1l —« h

If v > 0, the lemma is proved as in 1) If v < 0, notice 1 + m = When s < hy <
eoa . we have fh *=2|In s ho s 2 In s lds = ho 52| In s]” (1+m)ds >
§fhh0 @~2|In s|"ds. Hence fho o 2|lns|”cls < ﬁh“*1|lnh|”.
When a =1 and v > 0,
" | In s|” 1 1
/ sl o (10 A"t — [Inho"+) < I A"+,

h S v+ 1 v+ 1

Both desired inequalities are proved. i

We first consider points on dD. When ¢ € 0D, by Sokhotski-Plemelj Formula (see [7]
for instance), the nontangential limit of Sf at t € 9D is

1 f(¢) 1 f(Q) —ft)
QWZ/éch—tdC+ o1 = 2mi Jop  (—t

Here Sf(t) = 5= [, %d{ is interpreted as the Principal Value when ¢ € 0D and is well
defined if f is in Holder spaces. In particular, 5 [, éd(’ = 1 when ¢ € 0D. Let ho
and ¢o be defined as in Lemma 4.1 and (3) respectively, sp := minj<;<y{s;} > 0 and
(50 = inf1§j¢m§N{|t — t/’ it e Fj,t, € Fm} > 0.

Lemma 4.2. Let 0 < o < 1. If f € CL"L9"L(D), then for t,t + h € 0D with |h| <

mln{ 3co” 680007 31

f(t) = Sf(t) + f()- d¢ + f(t).

[Df(t+h)—Df(t)] < { Clfllorezog oyl h[* I [A])7, 0 <o < 1;

Cllfloerzogripy bl I [R[* o =1
for a constant C' dependent only on D,a and v.

Proof. Assume t € Ty without loss of generality. Since [t +h —t|=|h| < 2, t+h €T as
well. By Sokhotski-Plemelj Formula,

DF(1+ 1)~ BF(1) = an@é:;f(_ch) c—% %dgﬂfmm_m))



Because U;VZQFJ» does not intersect with I'; and ¢,¢t + h € I'y, we have |( —t| > C and

|(—t—h| > C on U;VZQF ; for some positive C' dependent only on 0D. It immediately follows
that

£(Q) = ft+1) £ - 1
/N TR P

Y (CEY O OLY TP,
C=i-RE-0)

<[ Cllfllosssor sy bl m il

<C|[fllereros(pylh|* [ n[R]]".

It thus suffices to show, in view of the chord-arc condition, for ¢, + h € Ty with h :=
|t + h,t| < min{% s

3767
(SESIELPY G SERUME Cllfllcvesor b A, 0 <a <1
W t—h vt T Ol len e PR a =1,

Due to the C1® boundary of I'y, |d¢| ~ |ds|. Denote by s the arclength parameter of 'y
with (|s—o = t, and by [ the arc on T'; centered at ¢ of total arclength 4h. Recall that s is
the total arclength of I';. The chord-arc condition implies | — | ~ |(,t| = min{s, s; — s}
on I'y.

On [, notice that
Cls — hl, 2

s <
_t_hl > t+h| > t|—|t+ht|| = 7 >
I | =2 CI¢,t+ bl = ClIC ] — [t + h,t]] {C|51_5—h|, 5> 3

NN

Y

Together with the fact that | f(¢) — f(t+h)| < || fllcrerosr(py|¢ —t —R|*|In|¢ —t — h[|” and



1£(Q) = f@®)] < | flleresospylC — t|°‘| In |C — t||” on 1, one obtains from Lemma 4.1,

FO—fEEh) [
R [ Mag
<O\ floweom o) / C—t— B In|C — ¢ — BI|d¢] + / ¢ " In ¢ — £ 1dC))

2h

2%
SCHchL%ogVL(D)(/ |s — h|*" Y In|s — hl|"ds + / 5|*" In s|"ds)
0 0

2h

3h
Smﬂﬂ%ﬂmdqfﬂmw%+/lwwmw@)
0 0
SC(HfHC’LC“LDg"L(D)hOC’ In h’y

Next we estimate

SO = ft+h)

Q) = f() ‘
d ol
i\l C_t_ C T\l —t C
1 1 FlE+h) —f(t) |
: /Fl\l(f@ _f(t+h))(C—t—h - C—t)dc‘ " i\l ¢—t d¢| = T+11.

Since II = |f(t + h) — f(t)Hﬁfrrl éd(\ < Clf(t + h) — f(t)|], 1] is bounded by
C||f||cLo‘LogVL(D)iLa| Inh|”. Now we treat I = | o fFl\l U+%d(| Due to the chord-arc
condition, |¢,t 4+ h| > |C,t| — |t,t + h| = min{s — h,s; —s — h} > h on I'; \ . Hence

or equivalently,
| —t—h| > C|¢ —t| = min{s, s; — s}
on 'y \[. Let I’ be the arc on I'y centered at ¢ with total arclength min{2hg, s;} sol C I’ C T.

Therefore

- ¢—t—h|*In|¢—t— |
fgmu%mw%wm/'| [*~HIn| [P
Qv ¢ =1
1

+C 71/ d
Iflewh | e=r=mic =%l

5 min{ho, 5"} ) . 2 1
§O|’f||CLQLog”L(D)h/~ s Ins|Vds + C||f||C(D)h/ —ds
2h . 82

~ h()
SCHf||cL°‘L<w”L(D)h(/~ s°7?|In s|"ds + 1).
2
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It follows immediately from Lemma 4.1,

CHfHCL”‘Log”L(D)iLO‘| Inhl”, 0<a<l;
I S 7 7 v+1
C||f||C’L1LogVL(D)h| 1Il h| y o = 1

For Holder semi-norm of S at interior points of the domain, classical singular integral
operators theory utilizes a generalized version of the Maximum Modulus Theorem of holo-
morphic functions to a branch of % to achieve the boundedness. We adopt here a

different approach introduced in [5].
Given t € 9D, define N (t), a nontangential approach region (cf. [3] [5]) as follows.

N(t)={z€ D: |z —t| <min{4dist(z,0D), %0}}

If = € N(t), then |[¢ — 2| > dist(z,0D) > 1|z —¢| for all ¢ € dD. Hence | — 2| >

1(J¢ —t] = |¢ —2|), implying |¢ — 2| > £|¢ —t| on dD. Altogether, for z € N'(t) and ¢ € 0D,
1 1

€2 = max(Sz — ], ¢ ~ 1) )

Lemma 4.3. Let 0 < a < 1. If f € CF'"L(D) and t € 0D, then for z € N(t) with

|z — t| < min{hy, 870},

Sf(z) — ®f(1)] < { Cllflleresonsipylz = 11 |z = 1], 0 <a <1;

Cllifllorrzogrr(pylz =t |z = ¢["*, - a =1

for a constant C' dependent only on D,a and v.

Proof. Without loss of generality, assume ¢t € I';. By Cauchy’s integral formula, ng /. oD Cizdg =
1 when z € D. Hence
L Q- L[ Q-
Sf(z) —@f(t) —(% - (——zd< + f(t)) - (% - ﬁdC + f(t))
_z—t f(Q) = f(t)
o Lo
_z=t [ Q- f() z—t f(Q) = f(t)
el er e e = M e L
z—t f(Q) = f(t)
" oni /N C—ac-n"
=:I+I11+1II
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Here [ is the arc on I'y centered at t of total arclength 2|z — t| =: 2|h|. For III, when
Ce UL, [¢—t] > b, and [¢ — 2| > [ —t] — |t — 2] > dp — % — 350 We thus deduce

[I1I] < Clhll| fllow) < Cllfllorezos ooy A" o [A]]".

Next we estimate / and I1. It follows from (4) and Lemma 4.1 that

C— 1" ¢ — ]
LHSCMMfMﬂ%www%/ HC_‘| e
—tall —tV
<Clflesssarsipy [ = g

R
sowmﬂnwum/"swwmﬂms
0
<O\ fllcrevosrripy|h|* [ [A] [

For I1, let I’ be the arc on I'y centered at ¢ of arclength min{2hg, s;} as in the previous
lemma.

€ —t|*|In|¢ —t]]”
11| <Clh f L*Log? L / dC +Clh /
11 SOl Sllmarsipy || S =)+ Clbll e [ frgpldc)

ho o

smwmwuwm%/ ammwﬁ+/ L g5

Ik in{ho, 3} s?

<{ C|Ifllczozoaripy bl I [B][7, 0 < a < 1;
S Clf ot zomr oyl I B[P, = 1.

Lemma 4.4. Let 0 < a < 1. If f € CL"L9"L(D) and t € D, then for z,z+h € N(t) with

|h| < min{hq, ‘if, 520}

5140 - s < { Ghfleneropitinily 0= oSt

Cllfll e zor oyl RI I [R][7F, - a=1
for a constant C' dependent only on D,a and v.

Proof. Without loss of generality, assume ¢ € I';. Since z,z + h € D, by Cauchy integral

12



formula, we have

1 FO =) f(O) = ft)

Sf(z+h) = Sf(2) =5~ Ny by S dC+
f(t) 1 B 1
" 2mi (/6DC_Z_th aDC—ZdO
_ 1 ©—f) fQ)— f(zf)dC
2 Jop C—z—h (—z
_h f(Q) = f(t)
ey B e
_N f(Q) = ft) h FO) = Ft)
2 l<<—z—h><c—z>d“2m/w C—2-hC-2™"

b £(6) - £
" oni / C—2-Wi-9

=:I+I1+1II

Here [ is the arc on T'; centered at ¢ of total arclength 2|h|. Note when ( € UN,T},
(=2 >|¢C—t|—|t—2] >3 and [ — 2z —h| > [¢ —t| — [t — 2| — |h| > 2. As in the proof
of Lemma 4.3, we immediately obtain

(L[ < Clhl| fllowy < Clifllezezor e hl* [ [A]]".

For the remaining two terms I and 1, without loss of generality assume |z—t| > |z+h—t|.
Then

1 h
|z —t| > §(|z—t|—|—|z—|—h—t|) > %
Together with (4), we have
¢ = 2| = max{C|z — 1|, C|¢ — t[} = max{C|h|, C|¢ — t[}. (5)

Recalling
¢ =z = hl Zmax{Clz +h —t],C|¢ = t[} = C|¢ -1,

and combining it with (5) and Lemma 4.1, one obtains

7| SOHf”CL”LOQVL(D)/ZK —¢[*7H1n[¢ — ¢]|"]dC]

IR
SCHf”cLaLog“L(D)/ s*H1In s|"ds
0
<C|fllgrerosr(py | 2I* | I [R]]".
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Denote by [’ the arc on I'; centered at ¢ of total arclength min{2hyg, s;}. Then

¢ =t In|¢ —t||” 1
1) <CIA s [ 4|+ Clbllflew) [ ——rldg
c (D) e ¢ — ]2 (D) .y =12
o 2 7 1
SC‘h|”]EHCLO‘LW"L(D)(/ s**|1In s|"ds +/ —ds)
|h| min{ho,‘%l} S

<{ Ol flloreros eyl Bl In [A]]*, 0 <a <1
= Cllfllerrzosepy Rl [A][H, a=1.

We now are in a position to estimate the Log-Holder semi-norm of Sf in D.

Proposition 4.5. Let 0 < o < 1. If f € CL"L°9"L(D), then for z,z + h € D with

. —v—1
|h| S mln{%; 12207 %7 < ; };

Cll fllcrezosrripylh|*| In [R|[Y, 0 <a <1
— <
|Sf(z+h) = Sf(2)] < { C||f||CL1LogVL(D)|h/||1n|h||u+17 a=1 (6)

for a constant C' dependent only on D,a and v.

Proof. Let t,t' € 0D such that |z — t| = dist(z,0D) and |z + h — t/| = dist(z + h,0D).
Without loss of generality, assume t € I';. If both |z — t| and |z + h — #/| are greater than
% then |( — 2| > |z —t] > ‘15—% and [( —z—h|> |t/ —2z—h| > ‘15—% on ¢ € 0D. Consequently,

S+ 1) = S1G) = [ TSI e

<CIhlllfllew)
<C[fllererosr(py|h|* I [R]]".

Otherwise, suppose one of |z —t| and |z+h—t| is less than 2. Say |z —t| < % implying
|2+ h—t'| < |z+h—t| <|z—t|+|h| < 2. The other case is done similarly. Hence z € N/ (t)
and z + h € N (') by definition. Thus if in addition either z + h € N (t) or z € N (¥'), (6)
follows directly from Lemma 4.4.

We are only left with the case when both z+h € D\ N(t) and z € D\ N(¢'). Noticing
that |z +h—t| < |z —t|+|h| <2 and [z — | < [z — (2 + h)| + [z + h— /| < £, it implies
by definition of NV (¢) and NV (¢') that |z +h —t| > 4|z + h — | and |z — /| > 4]z — |, or
equivalently,

1 1
|z+h—t'|§1|z+h—t| and |z—t|§z|z—t|.
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We claim that
lz+h—t| <|h|,|z—t| < |h|, and |t —¢'| < 3|A|. (7)
Indeed, since |z +h —t'| < 1|z + h —t] < 1(J]z + h —t'| + [t — t]), we have
1
z+h—1t] < §|t’—t|.
Similarly,
1 /
|z —t] < < |t' =t
3
On the other hand, since [t —¢| < [t/ —z — h| + [z 4+ h — 2| + |z — t| < 3|t/ — | + |h], one
infers
[t —t] < 3h.
Hence
lz4+h—t'| <|h|, |z—t] <|h|

The claim is proved.
Now we estimate

1Sf(z+h) = SFR) < [Sf(z+ h) = RF(E)| +15F(2) — f(X)| + [Rf () — f(H)]
for z,z + h,t and t' as previously. Because z + h € N(¢') and |z + h — /| < |h| <
min{ho, 2,e "'} by (7), we deduce from Lemma 4.3,

Cllfllcrorosrpylz + b — | Inlz +h —t|]*,0 < a < 1
_ / )
|Sf(z+h) —Qf(t)] < { CHfHCLlLogVL(D)’Z‘Fh—t/H1H|Z+h—t/||V+1,Oé:1

< C|\ flloreresrr(py|R|*[In|A[]¥,0 < a < 1;
- Cllfllgrroger (py Il I R] " @ = 1.

Here we have used the non-decreasing property of the real-valued functions s*|1In s|” and
s|In s|™! when s is less than min{hg, e *~'}. Similarly,

Cllfllerazosrrpylb|*| In |R|[V,0 < o < 1;
— <
ISf(z) —@f(t)| < { O||f||cL1LogVL(D)|h/||ln|h||y+17a: 1

Lastly, since |t/ — ¢| < 3|h| < min{lo S0 % o=v=11 }y [Lemma 4.2,

Ev%v?a

Ol fllgrarosrpylt = '*|In [t — ¢|]*,0 < a < 1
Of(t)—Df(t]] < (D) )
s - ool < { T T S
{ Cll fllcrerosrrpylh|*| In |[R|[7,0 < o < 1;

< v
C||f||CL1LOQVL(D)|h|| In |h|| +1,O[ = 1.

The proof of the proposition is complete. i
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Theorem 4.6. Let D be a bounded domain in C with C** boundary, k € Z+ U {0},0 <
a < 1. Then S defined in (2) sends CE*L°9"L(D) into itself when 0 < o < 1, and into

CL'Leg" ' L(D) if « = 1. Moreover, there exists a constant C' dependent only on D, o and v,
such that for any f € CF*Lo9"L(D),

HSfHC'LaLOQVL(D) < O||f||CL”Log”L(D)

if 0 <a<1, and
||Sf||cL1Log”+1L(D) < C||f||cL1LogVL(D)
if a =1.

Proof. Choose € such that 0 < ¢ < o < 1. We have ||f|
dependent only on v, a, e and D. Hence

15fllewy < 1S Ffllespy < ClIf
The rest of the theorem follows directly from Proposition 4.5. i

ce«p) < Cllfllorerosepy with C

ce(p) < C|lfllcrevos o py.-

5 Proof of Theorem 1.2

We are now in a position to prove Theorem 1.2. Let Q@ = D x A C C?, where D C C is a
bounded domain with C**1% boundary, and A is an open set in R or C. Let S be defined
in (1). For 0 < € < a <1, there exists a constant C' dependent only on v, «r, € and €, such
that for all f € CHE*Log"L(Q)),

1S fller) < ClISfllere) < Cllfllere) < Cllfllerrarosr(q)-

We shall further prove for |y| =k, H**'[DVS f] < C|| f||cr.orog (g Noticing that Sf is
holomorphic with respect to z € D, we assume D7 = 97' D}*>. Making use of integration by
part, we obtain for any (z, ) € €,

1
D8] (2,X) =507 SD f(2,))

| D f(CA)
—_— on-l1 A ’
27riaz aDaZ (—=z de

1 _ 0D f(C,N)
— v1—1 C A )
omi - /aD (-2

27TZ oD C—Z
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with f := 0P D) f € CL*Los"L(Q) and ||f||CLaLogVL(Q) < || fllek.rorogv ). (See [9] Proposi-
tion 3.3, or [11] p. 21-22 for more details.) Therefore, it will suffice to show H"1[Sf] <
C|| fllcreres (- By (the proof of) Proposition 4.5, it is already clear that for each A € A,
Sf(¢,\) as a function of ¢ € D satisfies

HBJFlI:S-]’E('? )\)] S CHf”CLD‘LogVL(Q)

for a constant C' independent of f and . In view of Lemma 2.1, we only need to show for
each z € D, Sf(z,() as a function of ( € A satisfies

Hy S f(2,7)] < Cll floreros(ay (8)

for a constant C' independent of f and z.

To do so we shall apply the Maximum Modulus Principle of holomorphic functions.
First consider z =t € 9D. Without loss of generality, assume ¢t € I'y. By Sokhotski—Plemelj
Formula, the non-tangential limit of Sf at (t,\) € 9D x A is

L FCAN)
2mi Jop C—1

Here the first term is interpreted as the Principal Value. We shall prove that for A, A+h € A
with 0 < |h| < min{he, 5},

Df(t,N) = L f(t A).

(SRS POy g Y

— d
op G —t op G — ¢

< Clhl* A H| fllreroae o) (9)

for a constant C independent of f,¢, A and h.
Indeed, write

d¢ = d
oD ¢—t ‘ oD ¢—t ‘
A+ n) - ) [
op G —1
=:1+11
Since | [, = =d(| is bounded in terms of the Principal Value,

11| < CIAl* ||| fllore rosvs )
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for a constant C' independent of f,¢, A and h.
For I, let [ be the arc on D that is centered at t with total arclength 2|h| and s be an
arclength parameter of 9D such that (|;—o = ¢. In particular, [ C I'y. Then

! ¢—t

'ﬁ/ (JEATH) = FA+R) = (FGA) = TN 4
I\l

¢ —t
(F(CA+h) = FICN) = (FEA+R) — f(t,N)
" /uj.V_Qr]- ¢—t “

=L+ L+

Because | —t| > &y for ¢ € UN,T; and |F(C, A+ h) = F(¢,A) = (F(t, A+ h) — F(£,M)] <
[h|* In |A[[|| fllozezos gy, one has

[I3] < Clh]%[In ‘hHVHfHCL“Log”L(Q)

for a constant C' independent of f,t, A and h.
Recall by the chord-arc condition, |( —t| ~ |(,t| = min{s, s; — s} on I';. Moreover, the
numerator of I, is less than C|¢ — ¢|*|In[¢ — #[|”|| f||czerosr (). It follows from Lemma 4.1

R -
Al <C [ s s < CIAT AP flessiosio

for a constant C' independent of f,¢, A and h.
Rearrange /5 and we obtain

FICGA+R) = F(CN)
T\ ¢—t

1

|| <
Gt

d¢

d(‘

+hﬂax+m—fmA»L

~ 2
smMﬂmwmummyA

< ORI Al fllgrevears o).

1 «a vl £
Sds + I [l [R[["] fllozeress o)

We have thus shown (9) holds, and hence there exists a constant C' such that for each
z=1t¢€ 0D, H{''®f(t,-)] < Cll fllgrarogr+1n ) with C independent of f and t. Notice

that for each fixed ¢ € A, Sf (2,() is holomorphic as a function of z € D and by Plemelj—
Privalov Theorem, continuous up to the boundary with boundary value ® f(z, (). Applying
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the Maximum Modulus Theorem to the holomorphic function ST ?Z‘iﬁﬁ)@ffff N of » € D for
each fixed A and A + h with 0 < || < min{he, 3}, we deduce

sup < sup
2€D Ao T |A][+t 1€0D [ T |t
= sup Hy"[@f(t,)]
tedD

<C|| fllorezosr iy,

with C independent of f , 21, 22 and z. (8) is thus verified and the proof of Theorem 1.2 is
complete.

We conclude the section by pointing out that the proof of Tumanov’s example in Section
3 indicates that for any p < 1, S does not send C*(A2) into CLLo9"L(A2) 0 < o < 1.
Theorem 1.2 thus is sharp in view of the example.

6 The proof of Theorem 1.3

Let D; € C, j = 1,...,n, be bounded domains with C**1* boundary, n > 2, k € Z* U
{0},0 < @ < 1, and Q := Dy x --- x D,. Given a function f € CHL"L9"L(Q)  since

CkLoLog"L(()) < Ck<(Q) for 0 < € < a, the following two operators are well defined for
z € Q,

1 Z,...,Z'_7 ',Z‘ 7"'7Zn _
Tf() = - [ Lm0 Gz m) e
2mi Jp, G =% (10)
Sf(z):i f(Zb""Zj_1’Cj7zj+1’“.’Zn)dC-
PRV 2mi Jop, G2 -

By Theorem 1.2, S; is a bounded operator sending C*L*Lo9"L(Q) into CFL*Los" ™ L(Q)).
It was proved in [9] that the operator T} is bounded between C*(Q). In the following, we
generalize this result and show 7} is bounded sending C*1"109"L(Q) into itself.

Proposition 6.1. For each j € {1,...,n}, T; is a bounded operator sending C***L°9"L(Q)
into CHLLod"L(Q) k€ ZT U {0},0 < a < 1,v € R. Namely, there exists a constant C
dependent only on Q, k, o and v, such that for f € CHL*Log"L(Q),

1T fllomrorosriay < Clf llorrorosr(ay.
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Proof. Without loss of generality, we assume n = 2 and j = 1. As in [9], |T1f|cr@) <
C|| fllck (o for a constant C independent of f. We only need to show

HV [D’yTlf] S CHfHCk:,LO‘LogVL(Q)

for some constant independent of f for all |y| = k.
Write DY = D]"DJ*. Then DTy f = D'T1(D3* f). If a < 1, choose a positive num-
ber 0 < e < 1—a. Soa+e<1and for each 2z, € Dy, |DYT1f(-, 22)||croresr(p,) <

C\|\ DTV (D3 f)(-, z2)||cote(py) for some constant C' independent of f and z,. We shall show
for each 2; € Dy, [|[DV*Th(Dy* f)(+, 22)lca+e(pyy < Cllfllchi). Indeed, by making use of
Theorem 2.2, if v, = 0,

1DV T (D32 (- 22) | cere(pry = T2 (D3* F)(-, 22) [ coe (o) < ClIDS? fllow) < Cllflle @

If vy > 1, then

IDY T (D3 (-5 22) | cere(pry < ClIDS fllem-rare() < Cllfllomn

for some constant C' independent of f and z. Altogether, DT} f((, z3) as a function of
¢ € D, satisfies

IDYT3 £ 20)lenmtonn oy < CIDETHDE ), 2)lemsecony < Cll oy < Cllflonsmsorrr o

for some constant C' independent of f and z5. If @ =1 (so v > 0), choose ¢ < 1. Then

IDYTf (s 22) |l ontzoornpyy < CUDTTH(DS ) 22)llerpny < CITUDS f (- 22))lemereoy)
and hence by Theorem 2.2,

IDYTLf (s 22)ll grtvogrn pyy < CIDS? Flleme@) < Cllflloniea) < Cllfllgrer o n o

for some C' independent of f and zs.
2 P2 /
Let zy(# 22) € Dy with |z, — 25| < hg and consider F, ., (¢) := Do JC22) Do 1162) o .

|z2—25|%|In [z2 =25

Since f € Ck,LaLog”L(Q), F227Zé S CVI(Dl) and HFZQ’ZéHC'Yl(Dl) < HfHCk,LaLoguL(Q). If v, =0,

”D’llelengHC(Dﬂ = HT1F22,ZQHC(D1) < CHFZngHC(Dl) < CHfHC’“vL”‘Log”L(Q)

for some constant C' independent of f, 2o and 25. For 7; > 1, choosing € < a, we have from
Theorem 2.2,

DV T, zyllomwn < CllEz g llem-1epy) < CllEs 4 llem o) < Cllfllorrererrq)
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for some constant C' independent of f, zo and 2. Hence for each z; € Dy,

| DT f (21, 22) — DYT f (21, 25)|

|22 = 25]%[ In[25 — 2]

= [DI TV F o (20)| < HIDPTE, o)) < Cllfllon oo ),

where C'is independent of f, z1, 29 and 25. The proof of the proposition is complete in view
of Lemma 2.1. i

Theorem 6.2. Let f = Y70 | fdz; € CHo"(Q), ke ZTU{0},0 <a <1 andv € R.
Then

n j—1

Tt = ZHTJ'Szfj =Nifi+LS5fo+ - +T5 - So-1fn (11)

j=1 1=1

is in CRELog” ™ L(Q) aith 1Tt r o sogrtn-1(gy < Cllfllorrarossiq) for some constant C
dependent only on Q, k,a and v.

Proof. The operator T' in (11) is well defined on C*L"L29"L(Q)) due to Theorem 4.6 and
Proposition 6.1. Moreover, for each 1 < j < n,

Jj—1 Jj—1

I T T3S il onnesosniniey < CITT Stfillouserapn-roay
E
< O] Sufillenseromisuiey
- =1
<

Cll f; ||ck,LaLog”+"—iL(Q)

S CHfjHCk,LO‘LogVL(Q).
Therefore, HTfHC;“LaLOQH—n—lL(Q) S CHfHCk,LaLOgVL(Q). l

Proof of Theorem 1.3. When f is O-closed, Tf defined by (11) satisfies 9T = f (in the sense
of distributions if k£ = 0) by [9]. The rest of the theorem follows from Theorem 6.2. |

Proof of Exzample 1.4. fiswell defined in A% and f = (z;—1)¥*log"(z1—1)dz, € CH Lo L(A?),
Assuming u € CHLLog"L(A2) solves Du = f in A2 for some 3 > «, then there exists a holo-
morphic function h in A? such that u = h + (z; — 1) log” (21 — 1) 2.
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Now consider w(§) = [ _1u({ 22)dz on § € A ={z € C: 2] <1} Since u €

CkLPLog"L( A2 4y € CREPLog”L(A) as well. On the other hand, a direct computation gives

1

w(€) = — D 0g” (€ — 1)Zyd 2y
©=[ - norie-)
—(6 — 1F" log (€ — 1) / L,

leal=1 422

Ri€— Do log(E 1)
B 2

This contradicts with the fact that (€ — 1)Ft@log”(€ —1) ¢ CHL Lea"L(A) for any 5> o. B
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