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Abstract

The purpose of this paper is to study Hölder estimates for the ∂̄ problem for (p, q)
forms on products of general planar domains. As indicated by an example of Stein
and Kerzman, solutions to the ∂̄ problem on product domains in Cn(n ≥ 2) does
not gain regularity in Hölder spaces. Making use of an integral representation of
Nijenhuis and Woolf, we show that given a ∂̄-closed (p, q) form with Ck,α components,
0 ≤ p ≤ n, 1 ≤ q ≤ n, k ∈ Z+ ∪ {0}, 0 < α ≤ 1, there is a Ck,α

′
solution to the ∂̄

problem on product domains for any 0 < α′ < α with the desired Hölder estimate.

1 Introduction and the main theorems

The existence and regularity of the Cauchy-Riemann equations have been thoroughly studied
in literature along the line of Hörmander’s L2 theory. An alternative approach is to express
solutions in integral representations. Through a series of work including Grauert-Lieb [10],
Henkin [13], Kerzman [16], Henkin-Romanov [15] and Diederich-Fischer-Fornæss [5], sup-
norm and Hölder estimates of solutions were established for smooth bounded domains which
are strongly pseudoconvex or convex of finite type. Higher order regularity of solutions on
sufficiently smooth bounded strongly pseudoconvex or strongly C-linearly convex domains
were studied by Siu [22], Lieb-Range [17], and more recently Gong [11] and Gong-Lanzani
[12] et al.

Let Ω ⊂ Cn, n ≥ 2 be a product of bounded planer domains. Namely, Ω = D1×· · ·×Dn,
where each Dj ⊂ C, j = 1, . . . , n, is a bounded domain in C such that ∂Dj consists of a
finite number of rectifiable Jordan curves which do not intersect one another. Then Ω is a
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1



bounded pseudoconvex domain (but not convex in general) with at most Lipschitz boundary.
A solution operator to ∂̄ was first constructed in a seminal work [19] of Nijenhuis and Woolf
in an iterated Hölder space over polydiscs. The supnorm estimate for C1 data up to the
boundary was proved by Henkin [14] on the bidisc. Recently, Chen-McNeal [3] studied a type
of Lp-Sobolev estimates for (0, 1) forms on general product domains in C2. They further
showed that Henkin’s solution operator is not bounded in Lp, 1 ≤ p < 2. For product
domains of arbitrary dimensions, Fassina-Pan [9] constructed a solution operator for (0, 1)
forms through one-dimensional method, from which they obtained L∞ estimates for smooth
data. See also Bertrams [1], Ehsani [8], Chakrabarti-Shaw [2], Dong-Li-Treuer [6] and the
references therein for investigation of the canonical solutions on product domains.

We should point out that unlike strictly pseudoconvex smooth domains, the ∂̄ problem
on product domains does not gain regularity. Indeed, motivated by an example of Stein and
Kerzman [16], one can construct examples to show that the ∂̄ problem on product domains
in general has no gain of regularity in the (standard) Hölder spaces. The examples are
verified at the end of Section 5. Therefore, a natural question is, given a Hölder data on
product domains, whether there exists a solution to the ∂̄ equation in the same Hölder class.
It is our goal to generalize the result of [19] and study the classical Hölder estimate of a ∂̄
solution operator for (p, q) forms on general product domains.

Let Ck,α(Ω) be the (standard) Hölder space, k ∈ Z+ ∪ {0}, 0 < α ≤ 1, and (p, q) form
is said to be in Ck,α

(p,q)(Ω), 0 ≤ p ≤ n, 1 ≤ q ≤ n, if all its components are in Ck,α(Ω). (See

Section 2 for the definition.) Given a function f ∈ Ck,α(Ω), define for z ∈ Ω, the solid and
boundary Cauchy type integrals below, respectively.

Tjf(z) : = − 1

2πi

∫
Dj

f(z1, . . . , zj−1, ζj, zj+1, . . . , zn)

ζj − zj
dζ̄j ∧ dζj;

Sjf(z) : =
1

2πi

∫
∂Dj

f(z1, . . . , zj−1, ζj, zj+1, . . . , zn)

ζj − zj
dζj.

(1)

The boundedness of these operators was established by Nijenhuis and Woolf in [19] on
polydiscs with respect to an iterated Hölder norm, which is stronger than the (standard)
Hölder norm. See Section 3 for a revisit of the related work in [19]. Thus the resulting
iterated Hölder spaces are subspaces of the corresponding (standard) Hölder spaces. Since
their approach relies also largely on rich symmetry of polydiscs, the method no longer works
either for the standard Hölder spaces or over general product domains. In this paper,
we prove the Hölder regularity for Tj and Sj in the (standard) Hölder spaces on general
product domains. Indeed, as demonstrated by examples in Section 4 in contrast to their one
dimensional counterparts on planar domains, the following Hölder estimates for Tj and Sj
turn out to be optimal.
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Theorem 1.1. a). Tj is a bounded linear operator sending Ck,α(Ω) into Ck,α(Ω), k ∈
Z+ ∪ {0}, 0 < α < 1. Namely, there exists some constant C dependent only on Ω, k and α,
such that for any f ∈ Ck,α(Ω),

‖Tjf‖Ck,α(Ω) ≤ C‖f‖Ck,α(Ω). (2)

b). Sj is a bounded linear operator sending Ck,α(Ω) into Ck,α′(Ω), k ∈ Z+ ∪ {0}, 0 < α′ <
α ≤ 1. Namely, there exists some C dependent only on Ω, k, α and α′, such that for any
f ∈ Ck,α(Ω),

‖Sjf‖Ck,α′ (Ω) ≤ C‖f‖Ck,α(Ω). (3)

As an application of the boundedness of these operators in Hölder spaces, an estimate
of a ∂̄ solution in Hölder spaces is obtained with a loss of regularity that can be made
arbitrarily small as follows.

Theorem 1.2. Let Dj ⊂ C, j = 1, . . . , n, be bounded domains with Ck+1,α boundary,

n ≥ 2, k ∈ Z+ ∪ {0}, 0 < α ≤ 1, and let Ω := D1 × · · · ×Dn. Assume that f ∈ Ck,α
(p,q)(Ω) is a

∂̄-closed (p, q) form on Ω, 0 ≤ p ≤ n, 1 ≤ q ≤ n. There exists a solution u ∈ Ck,α′

(p,q−1)(Ω) to

∂̄u = f such that for any 0 < α′ < α, ‖u‖Ck,α′ (Ω) ≤ C‖f‖Ck,α(Ω), where C depends only on
Ω, k, α and α′. Here when k = 0, all equations are understood in the sense of distributions.

It is desirable to know whether there exists a solution operator that can achieve the same
regularity as that of the data in Hölder spaces. However, we do not have answers at this
point. We also mention that another type of an iterated Hölder space was studied in [4]
where estimates of the solutions depend on higher order derivatives of the data. See Remark
3.3 d) for a brief comparison of these spaces and the corresponding estimates.

For smooth data up to the boundary of the product domains, the existence of smooth
solutions for (p, 1) forms has already been obtained in [2] with Sobolev estimates. As a
direct consequence of Theorem 1.2, we obtain the following corollary for (p, q) forms smooth
up to the boundary in terms of Hölder estimates.

Corollary 1.3. Let Dj ⊂ C, j = 1, . . . , n, be bounded domains with C∞ boundary, n ≥ 2,
and Ω := D1 × · · · × Dn. Assume f ∈ C∞(p,q)(Ω) is a ∂̄-closed (p, q) form on Ω, 0 ≤ p ≤
n, 1 ≤ q ≤ n. There exists a solution u ∈ C∞(p,q−1)(Ω) to ∂̄u = f in Ω. Moreover, for all

k ∈ Z+ ∪ {0}, 0 < α′ < α ≤ 1, ‖u‖Ck,α′ (Ω) ≤ Ck,α,α′‖f‖Ck,α(Ω), where Ck,α,α′ depends only on
Ω, k, α and α′.
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The rest of the paper is organized as follows. Section 2 addresses preliminaries about
solid and boundary Cauchy integrals on the complex plane. Section 3 is a revisit of the
fundamental work of Nijenhuis and Woolf [19] on the ∂̄ problem. Theorem 1.1 is proved
in Section 4, along with examples demonstrating those estimates are optimal in Hölder
category. The last section is devoted to the proof of Theorem 1.2 and Corollary 1.3. In the
Appendix, a convergence result of the mollifier method in Hölder spaces is proved.

Acknowledgement: Both authors thank Liding Yao for providing an example in
the Appendix. Part of the work was done while the second author was visiting American
Institute of Mathematics (AIM). She also appreciates AIM and Association for Women in
Mathematics (AWM) for hospitality during her visit.

2 Notations and Preliminaries

As a common notice, we use u and f to represent complex-valued functions, and boldface
u and f to represent forms. Unless otherwise specified, C represents a constant dependent
only on Ω, k, α and α′, which may be of different values in different places.

Let Ω ⊂ Cn be a bounded domain, the standard Hölder space Ck,α(Ω), k ∈ Z+∪{0}, 0 <
α ≤ 1 is defined by

{f ∈ Ck(Ω) : ‖f‖Ck,α(Ω) := ‖f‖Ck(Ω) +
∑
|γ|=k

Hα[Dγf ] <∞}.

Here Dγ represents any |γ|-th derivative operator,

‖f‖Ck(Ω) :=
k∑
|γ|=0

sup
z∈Ω
|Dγf(z)|

and the Hölder semi-norm is

Hα[f ] := sup
z,z′∈Ω,z 6=z′

|f(z)− f(z′)|
|z − z′|α

.

When k = 0, 0 < α < 1, we write C0,α(Ω) = Cα(Ω). For a (p, q) form f ∈ Ck,α
(p,q)(Ω), define

‖f‖Ck,α(Ω) to be the sum of the Ck,α(Ω) norms of all its components.
When Ω = D1 × · · · × Dn is a product of planar domains, for each j ∈ {1, . . . , n}, the

Hölder semi-norm with respect to j-th variable for each fixed (z1, . . . , zj−1, zj+1, . . . , zn) ∈
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D1 × · · · ×Dj−1 ×Dj+1 × · · · ×Dn is defined by

Hα
j [f(z1, . . . , zj−1, ·, zj+1, . . . , zn)] :

= sup
ζ,ζ′∈Dj ,ζ 6=ζ′

|f(z1, . . . , zj−1, ζ, zj+1, . . . , zn)− f(z1, . . . , zj−1, ζ
′, zj+1, . . . , zn)|

|ζ − ζ ′|α
.

Clearly,
sup
zk∈Dk,

1≤k(6=j)≤n

Hα
j [f(z1, . . . , zj−1, ·, zj+1, . . . , zn)] ≤ Hα[f ], j = 1. . . . , n.

On the other hand, the following elementary lemma for Hölder functions is observed for
product domains.

Lemma 2.1. Let Ω = D1 × · · · ×Dn be a product of planar domains. Then

Hα[f ] ≤
∑

1≤j≤n

sup
zk∈Dk,

1≤k(6=j)≤n

Hα
j [f(z1, . . . , zj−1, ·, zj+1, . . . , zn)]. (4)

Proof. For simplicity of exposition, assume n = 2 with Ω = D1×D2. Let C be the right hand
side of (4). For any z = (z1, z2) ∈ D1×D2, z

′ = (z′1, z
′
2) ∈ D1×D2, then (z′1, z2) ∈ D1×D2.

Hence |f(z1, z2)− f(z′1, z
′
2)| ≤ |f(z1, z2)− f(z′1, z2)|+ |f(z′1, z2)− f(z′1, z

′
2)| ≤ C|z − z′|α.

The rest of the section is devoted to classical theory in complex analysis. Let D be a
bounded domain in C with Ck+1,α boundary, k ∈ Z+ ∪ {0}, 0 < α ≤ 1. Given a complex-
valued continuous function f ∈ C(D̄), we define the following two operators related to the
Cauchy kernel for z ∈ D:

Tf(z) : =
−1

2πi

∫
D

f(ζ)

ζ − z
dζ̄ ∧ dζ;

Sf(z) : =
1

2πi

∫
∂D

f(ζ)

ζ − z
dζ.

Here the positive orientation of ∂D is adopted for the contour integral such that D is always
to the left while traversing along the contour(s). As is well known, T is the universal solution
operator for the ∂̄ operator on D, while S turns integrable functions on ∂D to holomorphic
functions in D. In the following, we state some properties of the two operators that will be
used in later sections.
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Theorem 2.2. (cf. [23]) Let D be a bounded domain with C1,α boundary, f ∈ C(D̄) and
fz̄ = ∂f

∂z̄
∈ Lp(D), p > 2. Then

f = Sf + T (fζ̄) in D.

Theorem 2.3. (cf. [23]) Let D be a bounded domain with Ck+1,α boundary, and f ∈
Ck,α(D), k ∈ Z+ ∪ {0}, 0 < α < 1. Then Tf ∈ Ck+1,α(D) and Sf ∈ Ck,α(D). Moreover,
there exists a constant C dependent only on D, k and α, such that

‖Tf‖Ck+1,α(D) ≤ C‖f‖Ck,α(D);

‖Sf‖Ck,α(D) ≤ C‖f‖Ck,α(D).

Theorem 2.4. (cf. [23]) Let D be a bounded domain. Then Tf ∈ Cα(D) if f ∈ Lp(D), p >
2, α = p−2

p
, and there exists a constant C dependent only on D and p, such that

‖Tf‖Cα(D) ≤ C‖f‖Lp .

Moreover, ∂̄T = id on Lp(D), 1 ≤ p <∞ in the sense of distributions.

For proofs of the above theorems, see p. 41 [23] for Theorem 2.2; p. 56 [23] and p. 21
[23] for Theorem 2.3; p. 38 [23] and p. 29 [23] for Theorem 2.4.

3 Revisit of Nijenhuis-Woolf’s work on polydiscs

In this section, we present the related results in the fundamental work of Nijenhuis and Woolf
[19] for the ∂̄ problem on the polydisc Dn := {(z1, · · · , zn) ∈ Cn : |zj| < 1, j = 1, . . . , n}. We
shall purposely retain their notation as much as possible for the convenience of readers.

Let f be a complex-valued function on Dn. Define 4if to be a function on the subset
Di of Dn+1 whose points Zi = (z1, · · · , zi−1, (zi, z

′
i), zi+1, · · · , zn) satisfies zi 6= z′i, such that

4if(Zi) = f(z1, · · · , zi, · · · , zn)− f(z1, · · · , zi−1, z
′
i, zi+1, · · · , zn).

Recursively, let Di1···ik be the subset of Dn+k whose points Zi1···ik = (z1, · · · , (zi1 , z′i1), · · · , (zik , z
′
ik

),
· · · , zn) satisfy zij 6= z′ij , j = 1, · · · , k. Define on Di1···ik a function

4i1···ikf := 4ik4i1···ik−1
f.

In [19], a naturally defined iterated Hölder space Cα(Dn) (with the notation slightly
different from that of the standard Hölder space) was introduced such that a function f ∈
Cα(Dn) if

‖f‖Cα(Dn) := ‖f‖C(Dn) +
n∑
k=1

H(k)
α [f ] <∞. (5)
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Here

H(k)
α [f ] := sup

1≤i1<...<ik≤n,
Zi1···ik∈Di1···ik

{
|4i1···ikf(Zi1···ik)|

|zi1 − z′i1|α · · · |zik − z
′
ik
|α

}
.

Since H
(1)
α is precisely Hα in Section 2, we have ‖ · ‖Cα(Dn) ≤ ‖ · ‖Cα(Dn). In fact, one further

has (p. 485 [19])
Cα(Dn) ⊂ Cα(Dn) ⊂ C

α
n (Dn). (6)

Let Tj and Sj be the solid and boundary Cauchy integral operators acting on functions
over j-th slice of Dn as in (1). Given a (p, q) form

f =
∑

i1<···<ip,
j1<···<jq

fi1···ipj̄1···j̄qdzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq ∈ C
1
(p,q)(D̄n), (7)

define Tjf and Sjf to be the action on the corresponding component functions. Namely,

Tjf :=
∑

1≤i1<···<ip≤n,
1≤j1<···<jq≤n

Tjfi1···ipj̄1···j̄qdzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq ;

Sjf :=
∑

1≤i1<···<ip≤n,
1≤j1<···<jq≤n

Sjfi1···ipj̄1···j̄qdzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq .

To construct a solution operator to the ∂̄ equation for (p, q) forms, [19] introduced a
projection operator πk. Precisely speaking, for the (p, q) form f given in (7) and each
1 ≤ k ≤ n, πkf is a (p, q − 1) form with

πkf := (−1)p
∑

1≤i1<···<ip≤n,
1≤k<j2<···<jq≤n

fi1···ipk̄j̄2···j̄qdzi1 ∧ · · · ∧ dzip ∧ dz̄j2 ∧ · · · ∧ dz̄jq .

Based on these definitions, a solution operator of the ∂̄ equation for (p, q) forms on polydisc
was constructed in [19] (p. 430).

Theorem 3.1. [19] If f ∈ C1
(p,q)(D̄n) is ∂̄-closed on Dn, then

T f := T1π1f + T2S1π2f + · · ·+ TnS1 · · ·Sn−1πnf (8)

is a solution to ∂̄u = f on Dn.
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In terms of the norm estimates of the operators, [19] (p. 435 & p. 487) proved the
following fundamental boundedness for both Tj and Sj operators in the iterated Hölder
spaces.

Theorem 3.2. [19] If f ∈ Cα(p,q)(Dn), then there exists a constant C dependent only on n
and α such that

‖Tjf‖Cα(Dn) ≤ C‖f‖Cα(Dn);

‖Sjf‖Cα(Dn) ≤ C‖f‖Cα(Dn).

Consequently, the solution operator T defined in (8) satisfies

‖T f‖Cα(Dn) ≤ C‖f‖Cα(Dn).

Remark 3.3. a). Theorem 3.1 was initially constructed for polydiscs in [19]. In fact, in
exactly the same way there (p. 430 [19]), one can show that (8) solves the ∂̄ problem
pointwisely on arbitrary product domains when the datum is C1

(p,q) up to the boundary.

b). We suspect that the approach used in the proof of Theorem 3.2 could be applied
to general product domains, since the domain under consideration in [19] was exclusively
polydiscs which carry rich symmetry.

c). As will be seen in Example 4.3, the estimate of Sj in Theorem 3.2 fails if we replace
Cα(Dn) by the (standard) Hölder space Cα(Dn).

d). Another type of an iterated Hölder space Λα
2 was defined by Chen and McNeal [4]

for a product of two general bounded domains. In the context of a product of two planar
domains D1 and D2,

Λα
2 (D1 ×D2) := {f ∈ C(D1 ×D2) : ‖f‖Λα2 (D1×D2) = |f |C(D1×D2) +H(2)

α [f ] <∞}.

Λα
2 is different from Cα in that the sum part in (5) for Cα is replaced by the single term

H
(2)
α [f ] for Λα

2 . As a matter of fact, ‖ · ‖Cα(D2) ≥ ‖ · ‖Λα2 (D2) and so Cα(D2) ⊂ Λα
2 (D2).

In [4], it was shown that for any ∂̄-closed (0, 1) form f = f1dz̄1 + f2dz̄2 with f1, f2,
∂f1
∂z̄2
∈

Λα
2 (D1 ×D2), there exists a solution T f ∈ Λα

2 (D1 ×D2) to ∂̄u = f such that

‖T f‖Λα2 (D1×D2) ≤ C

(
‖f‖Λα2 (D1×D2) +

∥∥∥∥∂f1

∂z̄2

∥∥∥∥
Λα2 (D1×D2)

)
.

[4] compared Λα
2 with (the standard) Cα by constructing an example in Λα

2 (D2) but not
in Cα(D2). They also attempted to find a Lipschitz function in C0,1(D2) but not in Λα

2 (D2)
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for any 0 < α < 1. However, this would contradict with (6) because for any 0 < α < 1, one
necessarily has

C0,1(D2) ⊂ C
α
2 (D2) ⊂ Λ

α
2
2 (D2).

The mistake is due to the fact that the constant C in part (3) of Example 5.6 [4] actually
goes to 0. Thus the limit there would not necessarily go to ∞ as they have claimed.

4 Sharp Hölder bounds of the Cauchy type operators

on product domains

Let Dj ⊂ C, j = 1, . . . , n, be a bounded domain with Ck+1,α boundary, n ≥ 2, k ∈
Z+ ∪ {0}, 0 < α ≤ 1, and Ω := D1 × · · · × Dn. Theorem 2.3-2.4 immediately imply the
following lemma.

Lemma 4.1. There exists a constant C dependent only on Ω, k and α, such that for any
j = 1, . . . , n, f ∈ Ck,α(Ω), 0 < α < 1, k ∈ Z+ ∪ {0}, γ ∈ Z+ ∪ {0} with γ ≤ k,

sup
zl∈Dl,

1≤l(6=j)≤n

‖Dγ
j Tjf(z1, . . . , zj−1, ·, zj+1, . . . , zn)‖Cα(Dj) ≤

{
C‖f‖C(Ω), γ = 0

C‖f‖Cγ−1,α(Ω), γ ≥ 1
≤ C‖f‖Cγ,α(Ω);

sup
zl∈Dl,

1≤l(6=j)≤n

‖Dγ
j Sjf(z1, . . . , zj−1, ·, zj+1, . . . , zn)‖Cα(Dj) ≤C‖f‖Cγ,α(Ω).

Here Dγ
j represents any γ-th derivative operator with respect to the j-th variable.

Although the solid Cauchy integral operator T defined in Section 2 is a smoothing opera-
tor in dimension one, Tj in (1) does not improve regularity along slice of higher dimensional
domains, as demonstrated by the following example.

Example 4.2. Consider f(z1, z2) = |z2|α on D2. Then f ∈ Cα(D2). However a straight
forward computation shows that T1f(z1, z2) = z̄1|z2|α /∈ Cα+ε(D2) for any ε > 0.

On the other hand, in contrast to the boundary Cauchy integral operator S in one
dimensional case, its counterpart Sj in (1) no longer maintains Hölder regularity in higher
dimensions. Indeed, Tumanov ([21] p.486) constructed the following concrete function f̃ ∈
Cα(∂D× D) but S1f̃ /∈ Cα(∂D× D), 0 < α < 1.
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Example 4.3. [21] Define for z2 ∈ D,

f̃(eiθ, z2) =


|z2|α, −π ≤ θ ≤ −|z2|

1
2 ;

θ2α, −|z2|
1
2 ≤ θ ≤ 0;

θα, 0 ≤ θ ≤ |z2|;
|z2|α, |z2| ≤ θ ≤ π.

Then f̃ ∈ Cα(∂D × D). However S1f̃ /∈ Cα(∂D × D). Extend f̃ onto D2, denoted as f ,
such that f ∈ Cα(D2). One can check that S1f /∈ Cα(D2). See [20] for more details of the
verification.

In view of Example 4.2-4.3, Theorem 1.1 characterizes the optimal Hölder bounds of the
two Cauchy type operators Tj and Sj.

Proof of Theorem 1.1. a). We only prove (2) when j = 1 and n = 2 for simplicity. The
other cases are proved accordingly.

We first show ‖T1f‖Ck(Ω) ≤ C‖f‖Ck,α(Ω) for some constant C independent of f . Write
Dγ = Dγ1

1 D
γ2
2 , γ1 + γ2 ≤ k. Then DγT1f = Dγ1

1 T1(Dγ2
2 f). Hence by Lemma 4.1,

‖DγT1f‖C(Ω) = sup
z2∈D2

‖Dγ1
1 T1(Dγ2

2 f)(·, z2)‖C(D1) ≤ C‖Dγ2
2 f‖Cγ1 (Ω) ≤ C‖f‖Ck,α(Ω).

Next, we show Hα[DγT1f ] ≤ C‖f‖Ck,α(Ω) for some constant C independent of f for all
|γ| = k. By Lemma 4.1, for each z2 ∈ D2, DγT1f(ζ, z2) as a function of ζ ∈ D1 satisfies

Hα
1 [DγT1f(·, z2)] ≤ ‖Dγ1

1 T1(Dγ2
2 f)(·, z2)‖Cα(D1) ≤ C‖Dγ2

2 f‖Cγ1,α(Ω) ≤ C‖f‖Ck,α(Ω)

for some constant C independent of f and z2.

On the other hand, let z′2( 6= z2) ∈ D2 and consider Fz2,z′2(ζ) :=
D
γ2
2 f(ζ,z2)−Dγ22 f(ζ,z′2)

|z2−z′2|α
on D1.

Since f ∈ Ck,α(Ω), it follows Fz2,z′2 ∈ C
γ1(D1) and ‖Fz2,z′2‖Cγ1 (D1) ≤ ‖f‖Ck,α(Ω). If γ1 = 0,

by Lemma 4.1,

‖Dγ1
1 T1Fz2,z′2‖C(D1) = ‖T1Fz2,z′2‖C(D1) ≤ C‖Fz2,z′2‖C0(D1) ≤ C‖f‖Ck,α(Ω),

where C is independent of f , z2 and z′2. For γ1 ≥ 1, we have by Lemma 4.1,

‖Dγ1
1 T1Fz2,z′2‖C(D1) ≤ C‖Fz2,z′2‖Cγ1−1,α(D1) ≤ C‖Fz2,z′2‖Cγ1 (D1) ≤ C‖f‖Ck,α(Ω)

for some constant C independent of f , z2 and z′2. In sum, for each fixed z1 ∈ D1,

|DγT1f(z1, z2)−DγT1f(z1, z
′
2)|

|z2 − z′2|α
= |Dγ1

1 T1Fz2,z′2(z1)| ≤ ‖Dγ1
1 T1Fz2,z′2‖C(D1) ≤ C‖f‖Ck,α(Ω),
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where C is independent of f , z1, z2 and z′2. We have thus proved Hα
2 [DγT1f(z1, ·)] ≤

C‖f‖Ck,α(Ω) with C independent of f and z1, and (2) as a consequence of Lemma 2.1.

b). As in part a), we only prove (3) for j = 1 and n = 2. Let |γ| ≤ k. Since S1f
is holomorphic with respect to z1 variable, we can further assume Dγ = ∂γ11 D

γ2
2 . Write

∂D1 = ∪Nj=1Γj, where each Jordan curve Γj is connected, positively oriented with respect
to D1, and of total arclength sj. Let ζ1(s) be a parameterization of ∂D1 in terms of the
arclength variable s, such that ζ1|s∈[

∑j−1
m=1 sm,

∑j
m=1 sm) is a Ck+1,α parametrization of Γj. In

particular, ζ̄ ′1 = 1
ζ′1
6= 0 on ∂D1. For any (z1, z2) ∈ Ω, it follows by integration by part,

∂1S1f(z1, z2) =
1

2πi

N∑
j=1

∫ ∑j
m=1 sm

∑j−1
m=1 sm

∂z1(
1

ζ1(s)− z1

)f(ζ1(s), z2)ζ ′1(s)ds

=− 1

2πi

N∑
j=1

∫ ∑j
m=1 sm

∑j−1
m=1 sm

∂s(
1

ζ1(s)− z1

)f(ζ1(s), z2)ds

=
1

2πi

N∑
j=1

∫ ∑j
m=1 sm

∑j−1
m=1 sm

∂s(f(ζ1(s), z2))

ζ1(s)− z1

ds

=
1

2πi

N∑
j=1

∫ ∑j
m=1 sm

∑j−1
m=1 sm

∂ζ1(f(ζ1(s), z2))ζ ′1(s) + ∂ζ̄1(f(ζ1(s), z2))ζ̄ ′1(s)

ζ1(s)− z1

ds

=
1

2πi

∫
∂D1

∂ζ1f(ζ1, z2) + ∂ζ̄1(f(ζ1, z2))(ζ̄ ′1(s))2

ζ1 − z1

dζ1.

Applying the integration by part inductively, one shall see DγS1f = S1f̃ , for some
function f̃ satisfying ‖f̃‖Cα(Ω) ≤ ‖f‖Ck,α(Ω). Therefore, we only need to prove ‖S1f̃‖Cα′ (Ω) ≤
C‖f̃‖Cα(Ω) for some constant C independent of f̃ .

Firstly, by Lemma 4.1, one has

‖S1f̃‖C(Ω) = sup
z2∈D2

‖S1f̃(·, z2)‖C(D1) ≤ C‖f̃‖Cα(Ω)

for some constant C independent of f̃ .
Next, we show Hα′ [S1f̃ ] ≤ C‖f̃‖Cα(Ω) for some constant C independent of f̃ . By Lemma

4.1, for each z2 ∈ D2, S1f̃(ζ, z2) as a function of ζ ∈ D1 satisfies

Hα′

1 [S1f̃(·, z2)] ≤ ‖S1f̃(·, z2)‖Cα′ (D1) ≤ C‖f̃‖Cα′ (Ω) ≤ C‖f̃‖Cα(Ω)

for some constant C independent of f̃ and z2.
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We further show there exists a constant C independent of f̃ and z1, such that for each
z1 ∈ D1, Hα′

2 [S1f̃(z1, ·)] ≤ C‖f̃‖Cα(Ω). First consider z1 = t1 ∈ ∂D1. Without loss of
generality, assume t1 ∈ Γ1 with ζ1|s=0 = t1. Since ∂D1 ∈ C1, ∂D1 satisfies the so-called
chord-arc condition. In other words, for any ζ1(s), ζ1(s′) ∈ Γj, j = 1, . . . , N , there exists a
constant C ≥ 1 dependent only on ∂D1 such that

|ζ1(s)− ζ1(s′)| ≤ min{s− s′, s′ + sj − s} ≤ C|ζ1(s)− ζ1(s′)|.

Here sj is the total arclength of Γj. In particular, when 0 ≤ s ≤ s1,

|dζ1| ≤ C|ds| and |ζ1(s)− t1| ≥ C min{s, s1 − s} (9)

for some constant C dependent only on D1. By Sokhotski–Plemelj Formula (see [18] for
instance), the non-tangential limit of S1f̃ at (t1, z2) ∈ ∂D1 ×D2 is

Φ1f̃(t1, z2) :=
1

2πi

∫
∂D1

f̃(ζ1, z2)

ζ1 − t1
dζ1 +

1

2
f̃(t1, z2).

Here the first term is interpreted as the Principal Value. We shall prove that for z2, z
′
2 ∈ D2

with h := |z2 − z′2| 6= 0,

|Φ1f̃(t1, z2)− Φ1f̃(t1, z
′
2)| ≤ Chα

′‖f̃‖Cα(Ω)

for some constant C independent of f̃ , t1, z2 and z′2, essentially following the idea of Muskhe-
lishvili [18].

Let h0 be a positive number such that hα−α
′
ln 1

h
≤ 1 for 0 < h ≤ h0 < min{1, s1

2
}. Then

h0 depends only on α and α′. When h ≥ h0,

|Φ1f̃(t1, z2)− Φ1f̃(t1, z
′
2)| ≤ 2‖S1f̃‖C0(Ω) ≤ C‖f̃‖Cα(Ω) ≤

C

hα
′

0

hα
′‖f̃‖Cα(Ω) ≤ Chα

′‖f̃‖Cα(Ω)

for some constant C independent of f̃ , t1, z2 and z′2.
When h < h0, write

Φ1f̃(t1, z2)− Φ1f̃(t1, z
′
2) =

1

2πi

∫
∂D1

f̃(ζ1, z2)− f̃(t1, z2)− f̃(ζ1, z
′
2) + f̃(t1, z

′
2)

ζ1 − t1
dζ1

+
f̃(t1, z2)− f̃(t1, z

′
2)

2πi

∫
∂D1

1

ζ1 − t1
dζ1 +

f̃(t1, z2)− f̃(t1, z
′
2)

2

=
1

2πi

∫
∂D1

f̃(ζ1, z2)− f̃(t1, z2)− f̃(ζ1, z
′
2) + f̃(t1, z

′
2)

ζ1 − t1
dζ1+

+ (f̃(t1, z2)− f̃(t1, z
′
2))

= : I + II.
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Here the second equality has used the fact that
∫
∂D1

1
ζ1−t1dζ1 = πi when interpreted as the

Principal Value, due to the positive orientation of ∂D1. Obviously

|II| ≤ Chα‖f̃‖Cα(Ω)

for some constant C independent of f̃ , t1, z2 and z′2.
Let l be the arc on ∂D1 that are centered at t1 with arclength 2h. Consequently, l ⊂ Γ1

due to the fact that h ≤ s1
2

. Write I as follows.

I =
1

2πi

∫
Γ1\l

f̃(ζ1, z2)− f̃(t1, z2)− f̃(ζ1, z
′
2) + f̃(t1, z

′
2)

ζ1 − t1
dζ1

+
1

2πi

∫
l

(f̃(ζ1, z2)− f̃(t1, z2))− (f̃(ζ1, z
′
2)− f̃(t1, z

′
2))

ζ1 − t1
dζ1

+
1

2πi

∫
∪Nj=2Γj

(f̃(ζ1, z2)− f̃(ζ1, z
′
2))− (f̃(t1, z2)− f̃(t1, z

′
2))

ζ1 − t1
dζ1

= : I1 + I2 + I3.

For I3, since ∪Nj=2Γj does not intersect with Γ1 and t1 ∈ Γ1, |ζ1− t1| ≥ C on ∪Nj=2Γj for some
positive C dependent only on ∂D1. On the other hand, the absolute value of the numerator
in I3 is less than Chα‖f̃‖Cα(Ω). It immediately follows that

|I3| ≤ Chα‖f̃‖Cα(Ω).

For I2, the absolute value of the numerator of the integrand is less than C|ζ1− t1|α‖f̃‖Cα(Ω).
We infer from (9) that

|I2| ≤ C‖f̃‖Cα(Ω)

∫
l

1

|ζ1 − t1|1−α
|dζ1| ≤ C‖f̃‖Cα(Ω)

∫ h

0

1

s1−αds ≤ Chα‖f̃‖Cα(Ω)

for some constant C independent of f̃ , t1, z2 and z′2. Now we treat with the remaining term
I1. Rearrange I1 so it becomes

|I1| ≤ |
1

2πi

∫
γ1\l

f̃(ζ1, z2)− f̃(ζ1, z
′
2)

ζ1 − t1
dζ1|+ |

f̃(t1, z2)− f̃(t1, z
′
2)

2πi

∫
γ1\l

1

ζ1 − t1
dζ1|.

The second term of the above inequality is bounded by Chα‖f̃‖Cα(Ω) for some constant C

independent of f̃ , t1, z2 and z′2, as in the argument for II. The first term when h < h0 is
bounded by

Chα‖f̃‖Cα(Ω)

∫ s1
2

h

1

s
ds ≤ Chα ln

1

h
‖f̃‖Cα(Ω) ≤ Chα

′‖f̃‖Cα(Ω).
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We have thus shown there exists a constant C independent of t1 and f̃ , such that for
each z1 = t1 ∈ ∂D1, Hα′

2 [Φ1f̃(t1, ·)] ≤ C‖f̃‖Cα(Ω). Notice that for each fixed ζ ∈ D2,

S1f̃(z1, ζ) is holomorphic as a function of z1 ∈ D1 and Cα continuous up to the boundary
with boundary value equal to Φ1f̃(z1, ζ) by Plemelj–Privalov Theorem. For each fixed z2

and z′2 with |z2−z′2| 6= 0, applying Maximum Modulus Theorem to the holomorphic function
S1f̃(z1,z2)−S1f̃(z1,z′2)

|z2−z′2|α
′ of z1 in D1, we immediately obtain

sup
z1∈D1

|S1f̃(z1, z2)− S1f̃(z1, z
′
2)

|z2 − z′2|α
′ | ≤ sup

t1∈∂D1

|Φ1f̃(t1, z2)− Φ1f̃(t1, z
′
2)

|z2 − z′2|α
′ |

= sup
t1∈∂D1

Hα′

2 [Φ1f̃(t1, ·)]

≤C‖f̃‖Cα(Ω),

with C independent of f, z1, z2 and z′2. Therefore

Hα′

2 [S1f̃(z1, ·)] ≤ C‖f̃‖Cα(Ω)

with C independent of f̃ and z1. The proof of (3) is complete.

5 Proof of Theorem 1.2 and Corollary 1.3

As an immediate consequence of Theorem 1.1, we obtain the following theorem.

Theorem 5.1. Let Dj ⊂ C, j = 1, . . . , n, be bounded domains with Ck+1,α boundary,

n ≥ 2, k ∈ Z+ ∪ {0}, 0 < α ≤ 1, and let Ω := D1 × · · · × Dn. Let f ∈ Ck,α
(p,q)(Ω), 0 ≤ p ≤

n, 1 ≤ q ≤ n. Then for any 0 < α′ < α, T f defined in (8) belongs to Ck,α′

(p,q−1)(Ω) with

‖T f‖Ck,α′ (Ω) ≤ C‖f‖Ck,α(Ω).

Proof. The operator T defined by (8) is well defined on Ck,α
(p,q)(Ω) due to Theorem 1.1.

Choose some positive constant ε < α−α′
n−1

. Then α′ + (n − 1)ε < α ≤ 1. Applying Theorem
1.1 repeatedly, it follows for each j ≤ n,

‖TjS1 · · ·Sj−1πjf‖Ck,α′ (Ω) ≤ C‖S1 · · ·Sj−1πjf‖Ck,α′ (Ω) ≤ C‖πjf‖Ck,α(Ω) ≤ C‖f‖Ck,α(Ω).

Therefore, ‖T f‖Ck,α′ (Ω) ≤ C‖f‖Ck,α(Ω).
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Remark 5.2. It is worth pointing out that at the top degree q = n, under the same assump-
tions as in Theorem 5.1, T f will maintain the same regularity as its data to be in Ck,α

(p,n−1)(Ω)
with

‖T f‖Ck,α(Ω) ≤ C‖f‖Ck,α(Ω).

This is because when q = n, f =
∑

1≤i1<···<ip≤n fi1···ipdzi1 ∧· · ·∧dzip ∧dz̄1∧· · ·∧dz̄n for some

fi1···ip ∈ Ck,α(Ω). Thus T f = (−1)p
∑

1≤i1<···<ip≤n T1fi1···ipdzi1 ∧ · · · ∧ dzip ∧ dz̄2 ∧ · · · ∧ dz̄n ∈
Ck,α

(p,n−1)(Ω) by definition (8). The desired estimate follows from that of T1 in Theorem 1.1.

As stated in Remark 3.3 a), it was proved in [19] that if f ∈ C1
(p,q)(Ω̄) is ∂̄ closed, then

(8) is a solution to ∂̄u = f on Ω. We thus have

Proof of Corollary 1.3. Observe that C∞(p,q)(Ω̄) ⊂ Ck,α
(p,q)(Ω) for any integer k ∈ Z+ ∪ {0} and

0 < α ≤ 1. Theorem 1.3 follows directly from the proof of Theorem 5.1 and Remark 3.3 a).

Remark 5.3. When f ∈ Cn−1,α
(p,1) (Ω), T defined by (8) coincides with the solution operator

constructed in [3][9] by repeated application of Theorem 2.2. Therefore the same supnorm
estimate in [9] passes onto T if the data is smooth up to the boundary. It would be interesting
to know whether the supnorm estimate holds for (p, q) forms smooth up to the boundary.

Assuming f ∈ Cα(Ω), 0 < α < 1, the ∂̄ equation is interpreted in the sense of distri-
butions. The following proposition shows that T f defined by (8) solves ∂̄u = f in this
sense.

Proposition 5.4. Let Dj ⊂ C, j = 1, . . . , n, be bounded domains with C1,α boundary, n ≥ 2,
0 < α ≤ 1 and Ω := D1 × · · · ×Dn. Assume f ∈ Cα

(p,q)(Ω) is ∂̄-closed in Ω in the sense of

distributions, 0 ≤ p ≤ n, 1 ≤ q ≤ n. Then u := T f defined in (8) solves ∂̄u = f in Ω in the
sense of distributions.

Proof. Given f ∈ Cα
(p,q)(Ω) for 0 < α ≤ 1, T f ∈ Cα′

(p,q−1)(Ω) with 0 < α′ < α by Theorem 5.1

with k = 0. We use the standard mollifier argument to show that T f solves ∂̄u = f in Ω in
the sense of distributions.

For each j ∈ {1, . . . , n}, let {D(l)
j }∞l=1 be a family of strictly increasing open subsets of

Dj such that

a). for l ≥ N0 ∈ N, bD
(l)
j is C2,α, 1

l+1
< dist(D

(l)
j , D

c
j) <

1
l
;

b). H
(l)
j : D̄j → D̄

(j)
j is a C1 diffeomorphism with liml→∞ ‖H(l)

j − Id‖C1(Dj) = 0.
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Let Ω(l) = D
(l)
1 × · · · ×D

(l)
n be the product of those planar domains. Denote by T

(l)
j , S

(l)
j

and T (l) the operators defined in (1) and (8) accordingly, with Ω replaced by Ω(l). Then
T (l)f ∈ Cα′

(p,q−1)(Ω
(l)) for each 0 < α′ < α. Adopting the mollifier argument to f ∈ Cα

(p,q)(Ω),

we obtain f ε ∈ C1,α
(p,q)(Ω

(l)) such that for each fixed 0 < α′ < α, ‖f ε − f‖Cα′ (Ω(l)) → 0 (see the

Appendix) as ε→ 0 and ∂̄f ε = 0 on Ω(l).

Fix an α′(< α). For each l, T (l)f ε ∈ C1,α′

(p,q−1)(Ω
(l)) when ε is small and ∂̄T (l)f ε = f ε

in Ω(l) by Theorem 5.1. Furthermore, applying Theorem 1.1 at k = 0, we have ‖T (l)f ε −
T (l)f‖C0(Ω(l)) ≤ C‖f ε− f‖Cα′ (Ω(l)) → 0 as ε→ 0. We thus have limε→0 T

(l)f ε exists in Ω(l) and

is equal to T (l)f ∈ Cα′

(p,q−1)(Ω
(l)) pointwisely.

Given a testing (p, q − 1) form φ with a compact support K, let l0 ≥ N0 be such that
K ⊂ Ω(l0−2). Denote by (·, ·)Ω (and (·, ·)Ω(l0)) the inner product(s) in L2

(p,q−1)(Ω) (and in

L2
(p,q−1)(Ω

(l0)), respectively), and ∂̄∗ the formal adjoint of ∂̄. For l ≥ l0, one has

(T (l)f , ∂̄∗φ)Ω(l0) = lim
ε→0

(T (l)f ε, ∂̄∗φ)Ω(l0) = lim
ε→0

(∂̄T (l)f ε, φ)Ω(l0) = lim
ε→0

(f ε, φ)Ω(l0) = (f , φ)Ω. (10)

We further claim that

(T f , ∂̄∗φ)Ω = lim
l→∞

(T (l)f , ∂̄∗φ)Ω(l0) . (11)

To prove this, for simplicity of notations yet without loss of generality, assume πjf contains
only one component function fj, so is for φ. We will also drop various integral measure,
which is clear from context. For each j ≥ 1,

− (−2i)n(2πi)j(T
(l)
j S

(l)
1 · · ·S

(l)
j−1πjf , ∂̄

∗φ)Ω(l0)

=

∫
z∈K

∫
ζj∈D

(l)
j

∫
ζ1∈∂D(l)

1

· · ·
∫
ζj−1∈∂D

(l)
j−1

fj(ζ1, · · · , ζj, zj+1, · · · , zn)∂̄∗φ(z)

(ζ1 − z1) · · · (ζj − zj)

=

∫
(z,ζj)∈K×Dj

∫
ζ1∈∂D(l)

1

· · ·
∫
ζj−1∈∂D

(l)
j−1

fj(ζ1, · · · , ζj, zj+1, · · · , zn)χ
D

(l)
j

(ζj)∂̄∗φ(z)

(ζ1 − z1) · · · (ζj − zj)

 .

Here χ
D

(l)
j

is the step function on C such that χ
D

(l)
j

= 1 in D
(l)
j and 0 otherwise.

Firstly, as a function of (z, ξj) ∈ K ×Dj,

∫
ζ1∈∂D(l)

1

· · ·
∫
ζj−1∈∂D

(l)
j−1

fj(ζ1, · · · , ζj, zj+1, · · · , zn)χ
D

(l)
j

(ζj)∂̄∗φ(z)

(ζ1 − z1) · · · (ζj − zj)
∈ L1(K ×Dj).
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To see this, notice that if z ∈ K(⊂ Ω(l0−2)) and ζk ∈ ∂D(l)
k , l ≥ l0, k = 1, . . . , j − 1, then

|ζk − zk| ≥ dist((Ω(l))c,Ω(l0−2)) ≥ dist((Ω(l0))c,Ω(l0−2)) >
1

l20
:= δ0.

Hence for each (z, ζj) ∈ K ×Dj \ {zj = ζj},∣∣∣∣∣∣
∫
ζ1∈∂D(l)

1

· · ·
∫
ζj−1∈∂D

(l)
j−1

fj(ζ1, · · · , ζj, zj+1, · · · , zn)χ
D

(l)
j

(ζj)∂̄∗φ(z)

(ζ1 − z1) · · · (ζj − zj)

∣∣∣∣∣∣ ≤ C

δj−1
0 |ζj − zj|

for some constant C > 0, which is integrable in K ×Dj.
On the other hand, by continuity of fj and the construction of Ω(l),

lim
l→∞

∫
ζ1∈∂D(l)

1

· · ·
∫
ζj−1∈∂D

(l)
j−1

fj(ζ1, · · · , ζj, zj+1, · · · , zn)χ
D

(l)
j

(ζj)∂̄∗φ(z)

(ζ1 − z1) · · · (ζj − zj)

=

∫
ζ1∈∂D1

· · ·
∫
ζj−1∈∂Dj−1

fj(ζ1, · · · , ζj, zj+1, · · · , zn)∂̄∗φ(z)

(ζ1 − z1) · · · (ζj − zj)

pointwisely in K ×Dj. Applying Dominated Convergence Theorem, we obtain

lim
l→∞
−(−2i)n(2πi)j(T

(l)
j S

(l)
1 · · ·S

(l)
j−1πjf , ∂̄

∗φ)Ω(l0)

=

∫
(z,ζj)∈K×Dj

∫
ζ1∈∂D1

· · ·
∫
ζj−1∈∂Dj−1

fj(ζ1, · · · , ζj, zj+1, · · · , zn)∂̄∗φ(z)

(ζ1 − z1) · · · (ζj − zj)
=− (−2i)n(2πi)j(TjS1 · · ·Sj−1πjf , ∂̄

∗φ)Ω.

(11) is thus proved for T in view of its definition (8).
Finally, combining (10) with (11), we deduce that

(∂̄T f , φ)Ω = (T f , ∂̄∗φ)Ω = lim
l→∞

(T (l)f , ∂̄∗φ)Ω(l0) = (f , φ)Ω.

The proof of Proposition 5.4 is complete.

Proof of Theorem 1.2. Theorem 1.2 follows directly from Theorem 5.1, Remark 3.3 a) and
Proposition 5.4.
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Finally, making use of the idea of Kerzman [16], we argue by the following examples the
regularity of the ∂̄ solution can not be improved in Hölder spaces over product domains.

Example 5.5. a). For each k ∈ Z+∪{0} and 0 < α < 1, consider ∂̄u = f := ∂̄((z1−1)k+αz̄2)
on D2, 1

2
π < arg(z1− 1) < 3

2
π. Then f = (z1− 1)k+αdz̄2 ∈ Ck,α(D2) is a ∂̄-closed (0, 1) form.

However, there does not exist a solution u ∈ Ck,α′(D2) to ∂̄u = f on D2 for any α′ > α.

b). For each k ∈ Z+∪{0}, consider ∂̄u = f := ∂̄( (z1−1)k+1

log(z1−1)
z̄2) on D2, 1

2
π < arg(z1−1) < 3

2
π.

Then f = (z1−1)k+1

log(z1−1)
dz̄2 ∈ Ck,1(D2) is a ∂̄-closed (0, 1) form. However, there does not exist a

solution u ∈ Ck+1,α(D2) to ∂̄u = f on D2 for any α > 0.

Proof. a). f is well defined in D2 and f = (z1−1)k+αdz̄2 ∈ Ck,α(D2). Assume by contradiction
that there exists a solution u ∈ Ck,α′(D2) to ∂̄u = f in D2 for some α′ with α < α′ < 1.
Then u = h+ (z1 − 1)k+αz̄2 for some holomorphic function h in D2.

Consider w(ξ) :=
∫
|z2|= 1

2
u(ξ, z2)dz2 for ξ ∈ D := {z ∈ C : |z| < 1}. Since u ∈ Ck,α′(D2),

we have w ∈ Ck,α′(D) as well. On the other hand, by Cauchy’s Theorem,

w(ξ) =

∫
|z2|= 1

2

(ξ − 1)k+αz̄2dz2 = (ξ − 1)k+α

∫
|z2|= 1

2

1

4z2

dz2 =
πi

2
(ξ − 1)k+α.

This is a contradiction since (ξ − 1)k+α /∈ Ck,α′(D) for any α′ > α.

b). Argue in a similar way as in a) by noticing that f = (z1−1)k+1

log(z1−1)
dz̄2 ∈ Ck,1(D2). If

u ∈ Ck+1,α(D2) solves ∂̄u = f in D2 for some α > 0, then u = h + (z1−1)k+1

log(z1−1)
z̄2 for some

holomorphic function h in D2 and w(ξ) :=
∫
|z2|= 1

2
u(ξ, z2)dz2 ∈ Ck+1,α(D2). However by

Cauchy’s Theorem,

w(ξ) =

∫
|z2|= 1

2

(ξ − 1)k+1

log(ξ − 1)
z̄2dz2 =

πi

2

(ξ − 1)k+1

log(ξ − 1)
/∈ Ck+1,α(D)

for any α > 0.

A Appendix

Let Ω ⊂ Rn be a bounded domain, Ωj := {x ∈ Ω : dist(x, ∂Ω) > 1
j
} when j is large, and ρ

be a smooth function in Rn by

ρ(x) :=

{
C exp( 1

|x|2−1
), |x| < 1;

0, |x| ≥ 1,
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where C is selected such that
∫
Rn ρ(y)dy = 1. ρ is called the standard mollifier. Let

f ∈ L1
loc(Ω) and define for x ∈ Ωj,

fj(x) :=

∫
|y|≤1

ρ(y)f(x− y

j
)dy. (12)

Then fj ∈ C∞(Ωj). The mollifier argument is a standard method dealing with weak deriva-
tives in Sobolev spaces (See, for instance, [7] p. 717). The following theorem ought to be
well-known for Hölder spaces, however we could not locate a reference. For convenience of
the reader, we include the proof below.

Theorem A.1. Let Ω̃ ⊂⊂ Ω and 0 < α′ < α. If f ∈ Cα(Ω), then fj → f in Cα′(Ω̃). I.e.,
‖fj − f‖Cα′ (Ω̃) → 0 as j →∞.

Proof. Let j0 be such that Ω̃ ⊂ Ωj0 and assume j ≥ j0. ‖fj−f‖C(Ω̃) → 0 due to the uniform

continuity of f on Ω ([7] p.718). Write φj(x) := fj(x)−f(x) =
∫
|y|≤1

ρ(y)(f(x− y
j
)−f(x))dy.

We next show for any ε > 0, there exists N ∈ N such that when j ≥ N ,

|φj(x)− φj(x′)|
|x− x′|α′

≤ ε,

for all x, x′ ∈ Ω̃. Indeed, choose δ0 > 0 satisfing ‖f‖Cα(Ω)δ
α−α′
0 ≤ ε

2
.

When |x− x′| ≤ δ0,

|φj(x)− φj(x′)|
|x− x′|α′

≤
∫
|y|≤1

ρ(y)
|f(x− y

j
)− f(x′ − y

j
)|

|x− x′|α′
dy +

∫
|y|≤1

ρ(y)
|f(x)− f(x′)|
|x− x′|α′

dy

≤ 2‖f‖Cα(Ω)|x− x′|α−α
′ ≤ ε.

When |x−x′| > δ0, choose N ∈ N such that ‖f‖Cα(Ω)δ
−α′
0 N−α ≤ ε

2
. Then for any j ≥ N ,

|x− x′| > δ0, we have

|φj(x)− φj(x′)|
|x− x′|α′

≤
∫
|y|≤1

ρ(y)
|f(x− y

j
)− f(x)|

|x− x′|α′
dy +

∫
|y|≤1

ρ(y)
|f(x′ − y

j
)− f(x′)|

|x− x′|α′
dy

≤ 2‖f‖Cα(Ω)|x− x′|−α
′
j−α ≤ ε.

Given f ∈ Cα(Ω), although only the Cα′ convergence of the family {fj} defined by (12)
for some α′ > 0 is needed in Proposition 5.4, we note that the Cα convergence of {fj} can
not be achieved in general. The following simple counter-example was provided by Liding
Yao.
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Example A.2. Let Ω = (−1, 1) ∈ R and

f(x) =

{
0, x ≤ 0;
xα, x > 0.

Then f ∈ Cα(Ω). However, for any Ω̃ ⊂⊂ Ω containing the origin, ‖fj − f‖Cα(Ω̃) ≥∫ 1

0
ρ(y)yαdy > 0 for sufficiently large j.

Proof. Let j0 be such that Ω̃ ⊂ Ωj0 and assume j ≥ j0. Write φj(x) := fj(x) − f(x) =∫ 1

−1
ρ(y)(f(x− y

j
)− f(x))dy. For each fixed j, it can be verified that

φj(−
1

j
) =

∫ 1

−1

ρ(y)f(−1 + y

j
)dy = 0

and

φj(0) =

∫ 1

−1

ρ(y)f(−y
j

)dy = (
1

j
)α
∫ 1

0

ρ(y)yαdy.

However for all j,

‖φj‖Cα(Ω̃) ≥
φj(0)− φj(−1

j
)

(1
j
)α

=

∫ 1

0

ρ(y)yαdy > 0.
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