The CR immersion into a sphere with the
degenerate CR Gauss map

Wanke Yin? Yuan Yuanfand Yuan Zhang?

Abstract

It is a classical problem in algebraic geometry to characterize the algebraic subvari-
ety by using the Gauss map. In this note, we study the analogous phenomenon in CR
geometry. In particular, under some assumptions, we show that a CR map between
spheres is totally geodesic if and only if the CR Gauss map of the image is degenerate.

1 Introduction

Denote by CP™ the complex projective space, and denote by G(k,n) the Grassmannian of
CP*’s in CP". Let V be a complex analytic subvariety in CP" and V,, its smooth points.
The Gauss map of V' C CP" is defined by v : V;,, — G(k,n), which sends each smooth
point x € Vi, to the projective tangent space T, (V). ~ is said to be degenerate if its generic
fibers have positive dimensional components. Otherwise, v is called non-degenerate. In
Cartan’s moving frame theory, the Gauss map has wide geometric applications in Euclidean
and projective geometries. For example, one can obtain rigidity results from the degeneracy
of the Gauss maps. In fact, the study of subvarieties of complex projective spaces, tori and
hyperbolic space forms with degenerate Gauss maps are classical works due to Griffiths-
Harris [GH], Ran [R] and Hwang [Hw|. The interested readers are referred to [IL] for more
recent progress on subvarieties of complex projective spaces with degenerate Gauss maps.
The Gauss map is also closely related to the second fundamental form as the latter may be
interpreted as the derivative of the Gauss map. In CR geometry, the CR second fundamental
form appeared in the fundamental work of Chern-Moser [CM] and Webster [W1], as well as
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the work of Ebenfelt-Huang-Zaitsev [EHZ] in the study of the classification and rigidity of CR
submanifolds. One of the central problems in CR geometry is the classification of smooth CR
maps between spheres. This problem has been extensively studied and important progresses
have been made by many authors in recent years (cf. [W2, Fa86, Hu99, Ha05, HJX06,
DL, HJY14, Eb] and references therein). If the CR second fundamental form vanishes, S.
Ji and the second author showed that the smooth immersed strongly pseudoconvex real
hypersurface in a sphere dB™ must be linear [JY]. Cheng-Ji later relaxed the condition to
the vanishing of the difference of the second fundamental form and CR second fundamental
form and proved the linearity under some codimension restriction [CJ]. However, in CR
geometry, the Gauss map is not fully understood. One can define the Gauss map for any
C' immersed CR submanifold in BY as the sphere dBY may be embedded into CP" (The
detailed formulation of the CR Gauss map is given in the last paragraph of the next section).
The following interesting question is formulated in [CJL]: Let V C OB be an immersed
spherical CR submanifold. Is it true that the CR Gauss map < is degenerate if and only if
V is the image of a linear embedding F : 9B" — dBY? In [CJL], Cheng-Ji-Liu answered
the question in the following two cases: (1) dimgV = 3, N = 3; (2) V = F(0B?) and
F : 0B? — OBY is the restriction of a rational holomorphic map with deg(F) = 2.

We next state our main results, in which the terminology will be defined in the next
section.

Theorem 1.1. Let F : OB™ — OBY be a C3-smooth CR map with geometric rank kg < n—2.
Assume that one of the following conditions hold:

(1) the degeneracy rank < 2,

(2) the third degeneracy rank > 8, and the third degeneracy dimension

d3 7é % (3(%0 + 3)n — (Iio + 1)(2%0 + 1)) .
Then the CR Gauss map of F(OB™) in OBY is degenerate if and only if F is a totally geodesic
embedding.
As an immediate consequence, we obtain
Theorem 1.2. Let F : 0B" — 0BY be a C3-smooth CR map with geometric rank ko < n—2.

Suppose that N < 3(ko + 1)(ko + 2)n — gko(ko + 1)(260 + 1). Then the CR Gauss map of

F(OB") in OBY is degenerate if and only if F is a totally geodesic embedding.

2 Notations and Preliminaries

In this section, we start by recalling some notations and properties associated to the proper
holomorphic maps between balls, which were established in [Hu99][Hu03] and [HJX06]. Next,
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we define the CR Gauss maps of these maps and reduce the condition on the CR Gauss
maps to a proper form, following the lines of [Hw]| and [CJL].

Let OB" be the sphere in C" and write 0H,, := {(z,w) € C" ! x C: Im(w) = |z|*} for
the Heisenberg group. By the Cayley transformation

(2.1)

we can identify a CR map F from dB" into dBY with dpy' o F o dp,,, which is a CR map
from OH,, into OHy.

Parameterize OH,, by (z,z,u) through the map (z,%z,u) — (z,u + i|z[*). For a non-
negative integer m and a function h(z,Z,u) defined over a small ball U of 0 in 0H.,, we
if h(tj}ﬂ?%)
t(€ R) — 0. For a holomorphic function (or map) H(z,w), we write

2z 1+ 2w
1—dw’ 1—iw

Pn - Hn — Bn’ pn(z,w) = (

say h(z,Z,u) = 0y(m) — 0 uniformly for (z,u) on any compact subset of U as

o0 o0
H(Z,’LU) _ § : H(k’l)(z)wl _ § : H(1111+“'+7zn—1[n—1+11n)Z’:Lll . Z;Tfllwl.
k,1=0 i1 yin_1,l=0

Here H*!(2) is a polynomial of degree k in z.

Let F = (f.¢,9) = (f.9) = (fi,~*+ . fa—1. 61, ** ,6x—n. g) be a non-constant C*-smooth
CR map from 0H,, into 0H with F(0) = 0. For each p = (zp, wy) € M close to 0, we write

o) € Aut(H,) for the map sending (z,w) to (z + zo, w + wo + 2i(z, %)) and 7, € Aut(Hy)
by defining

Tf(Z*aUJ*) = (2" = f(z0,wo), w" — g(z0, wo) — 2i(2", f(20,w0)))-

Then F' is equivalent to
F,=10F o0y =fpdp ). (2.2)
Notice that Fy = F" and F,(0) = 0. Let

_ (Ofpy _ (Ot Ofpnt 081 Obpnay _ o 7
El<p)_<azl)’0_ ( 82[ ) ) azl ) 82[ ) ) 82’[ )}O_Ll(f)(p>7 (2 3)
af, 0 Ofpn_1 Ob, OBy N—n ~ '
E(p) = ()] = (Cet . oo OO0y )

Then the rank of {E;(p),--- , E._1(p)} is n — 1. Write A(p) = ¢.(p) — 2i(f.(p), f(p)) =

|L;(f)|>. We can choose vectors Cj(p) for 1 <[ < N — n such that

( ) _ ( E{(p) E{(p) C’f(p), . 7C§V—n(p)) (2‘4)

AR VA
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is a unitary matrix. Define

~ At
= (o) = — Ew( oY >. (25)

Then F; has the following form:

£ = 2+ agw+ O(|(z,w) ).
8 = bjw + O(|(z,w) ) (2.6)
g" = w+ du? + O(|zw]) + of| (2. w)P).

Write a = (ay, -+, @p1,01,bn ), b= (b1, -+ ,bn_y) and define F;* by

Tk 1 A;ZU)—CL*Z’UJ SRk 1 *
fp - q*(z,w) (fp( ) ) gp( ) ))7 Ip )gp‘ (27)

Here we have set

1

. 82 *
¢ (z,w) = 14 2iaf; + (r — i\a!z)g;(z,w), r= éRe( Ip

ow?

(0)). (2.8)

F;* has the following normalization, which is fundamentally important for the under-
standing of the geometric properties of F.

Lemma 2.1 (Lemma 5.3, [Hu99]). Let F' be a C?-smooth CR map from OH,, into OHy,
2 <n < N. For each p € OH,, there is an automorphism 7,* € Auto(Hy) such that
Fy* = 1," o I}, satisfies the following normalization:

=240, W(2)w + 0u(3), 5 = ¢ (2) + 0w(2), 65" = w + 0(4), with

5,0 D)o = 6@ ()2

Write A(p) = _Qi(%b)lgﬂg(n—l) in the above lemma. In [Hu03|, Huang defined
the geometric rank of F at p, denoted by Rkpr(p), to be the rank of the (n — 1) x (n — 1)
matrix A(p). Now we can define the geometric rank of F to be ko(F) = mazycom, Rkr(p).
For a C? smooth CR map F from dB" into OBY, the geometric rank of the map F is defined
by the map py' o F o p,. By [Hu03], ro(F) depends only on the equivalence class of F' and

HO(F)Sn—ZWhenN<@.



Let F;** be defined as follows:

Fi = (U w)U ™ 63 (U w)U*, 5" (U, w) ). (2.9)

p

When ko < n — 2, F;* satisfies the following normalizations:

(f] e Z] —|— %ILLJZJ/LU + Owt(g) forj S HO?
fj:Zj+Owt(3) fOI' /i0<j Sn_la

n—1
ik = pirzizk + Y enjpznw + djpw® + O(|(z,w)?) for (4,k) € So,

h=1 (2.10)

n—1

ik = > engrznw + djpw? + O(|(z,w)|?) for (4,k) € Sy,
h=1

[ g =w+ 0u(4).

Here, for 1 < kg < n—2, we write S = 55U Sy, the index set for all components of ¢, where
So={(,):1<j<kp1<I<n—-1j7j<l}and S ={(,l):j=ko+1,ko+1<1<
N—n—W}. Also, pj = /ij + i for j <l <kg;and pj =/ if j < ko <lor
lfj =1 S Rq.

Let 7 € Auto(H,) and o € Auty(H,,) be given by

(z — cw,w)
q(z,w)

o(z,w) = , T(25,w") = (2.11)

with

q(z,w) = 14 2i(¢, 2) — i|c|*w,
¢ (25, w*) =1 —2i(e, 2*) —i|c]*w", (2.12)
Cc= (Cb e 7Cn—1)-

Then by suitably choosing ¢; for 1 < j < kg, we can make F;*** = 7o F5™ o o still have
the form (2.10). Furthermore, we can make sy (0) =0 for 1 < j < Kkg. In [HIXO06], the

Ow?
authors proved the following normalization theorem for maps with geometric rank bounded

by n — 2, though only part of it is needed later:

Theorem 2.2. Suppose that F' is a rational proper holomorphic map from H,, into Hy,
which has geometric rank 1 < ko < n — 2 with F(0) = 0. Then there are o € Aut(H,)
and 7 € Aut(Hy) such that T o F o o takes the following form, which is still denoted by
F = (f,¢,9) for convenience of notation:



( fl = Z;il iji;»(Z,w), l < Ko,
fi=z%, ko+1<j<n—-1,
Gk = purzizk + 350 2B, (LK) € So,
S = 2521 %00y = Owe(3), (LK) € Sy, (2.13)
g=w, |
f[}(z,w) = 5{ + Mngw + bl(;)(z)w + Owi(4), 1 <1< kg, >0,
L Pk (2 w) = Out(2), (k) €S
Here, for 1 < kg < n—2, we write S = SqUS1, the index set for all components of ¢, where
So={0,1):1<j<kp,1<I<n—-1,j<1} and S ={(,1):j=ro+ Lko+1<1<

N—n—%}. Also, pj = /15 + i for j <1< ko; and pj = /l; if j < ko <1 or
ij:lgﬁjo

For later use, we will also set

RO RO

¢(1’1)(2) = Zejzj with €; € (Cﬁ(s)’ ](gll’l)(z) = Zej’klzj with (k’, l) S

j=1 j=1

Next we define the degeneracy rank for any smooth CR map F' from 0H,, to OHy, which
is an invariant integer introduced by Lamel [Lam01](see also [EHZ] and [Eb13]. In fact, the
degeneracy rank is defined for more general maps).

For any point p € OHL,, we define an increasing sequence of linear subspaces E(p) C CV
for F,

Ey(p) = spanc{L®pz o F(p) | la| <k} (2.14)
where L* = L* .. L%, a = (aq,...,n_1), |o| = |oa| + ... + |an-1], Ly = 8%]_ + 20z,

p(Z,7) is the defining function of the real hypersurface OHy, and p7 = 0p is the complex
gradient of p. Note that {L;}1<j<,—1 form a basis of tangent vector fields of (1,0) along
OH,,.

We define d;(p) := 0 and

di(p) := dime Ex(p)/Er(p). (2.15)

Then we have a sequence of dimensions di(p) = 0 < dao(p) < d3(p) < ... < di(p) < ...
Notice that the dimensions d;(p) is lower semi-continuous. By moving p to a nearby point
po if necessary, we may assume that all d;(p) are locally constant near p, and

dz(p) < dg(p) <. < dlo(p) = dlo+1(p) = ... (216)
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for some [y with 1 < [p < N —n + 1. In other words, there exists an open subset U of
OH,, on which all d;(p) are locally constant near py, and (2.16) holds. By [EHZ], we may
call |y the degeneracy rank of F', and d;, the degeneracy dimension of F'. These definitions
depend on the open subset U. By minimizing [, among all such open sets, we can define
degeneracy rank [y of F' as an invariant. we also call d;(p) for j € [2,1o] the j-th degeneracy
dimension. The dimensions d;(p) j = 1,-- -,y can be interpreted as ranks of the CR second
fundamental form of f and its covariant derivatives. The interested reader is referred to
[Eb13, Section 2] for more details.

We end this section by recalling the CR Gauss map formulated in [CJL]. Let F :
OH, — OHy be a rational CR map. Write F(z,w) = (f(2,w), ¢(z, w),g(z,w)) and set
L; = %+2iz_ja% for 1 <j <n—1. Since F'is a CR map, we have L;f = L;¢ = L;g = 0.
Thus the matrix

Lif Lyg Li¢
: 5 : (2.17)
Ln—lf Ln—lg Ln—l¢
Tf Ty To

represents an element in the Grassmanian G(n, N), which is Gauss map associate to the
map. By an action of a non-singular n x n matrix, the element is equivalent to the unique
matrix representation (I,x, G), where Iy, is the unit matrix and

-1

Lif Lig Loy s Lion—n
Glzyw) = | : - : : : (z,w).  (2.18)
( ) Lnflf Lnflg Ln71¢1 e Ln71¢N7n ) (
Tf Tyg Toy - Ton_n

The CR Gauss map of the image F'(0H,,) is defined by v : p — G(p) for any p € OH,,.

3 Reduction of the degeneracy of the CR Gauss map

In this section, we will reduce the CR Gauss map condition to a proper form, which is crucial
to the proof of our main theorems.

Theorem 3.1. Let F : OH,, — 0Hy be a C* CR immersion, the geometric rank of F at 0
is ko € [1,n — 1] which is mazimal. We further suppose that F' has the normal form (2.13).
Then for any fized p = (29, wo) € OHL, near the origin, the CR Gauss map equation y(z,w) =



Y(z0, wo), for (z,w) close to (20,wy), expressed in terms of F;**, takes the following form

W o), S = ol ) (3.)

For any fixed p = (29, wp) € OH,, near the origin, set z = z + zo and w = w + wy + 2iZpz.
We also write

Lif Lig Lo
P(z,w) = 'Ln_lf ‘Ln_1g (z,w), Q(z,w) = ‘Ln_ld) (z,w). (3.2)
Tf Tyg Te

Then CR Gauss map equation y(z,w) = (2o, wp) is equivalent to
Q(zw) = P(z,w)P~(0)Q(0). (33)

Next we express the system (3.3) in terms of [ introduced in the preceding section
through the following 5 steps.

Step I. Express the CR Gauss map equation in terms of F),
By the construction of Huang in §2 of [Hu03], F, defined by (2.2) takes the following
form:

fp(z’w) = f(z,w) - f(Zoywo),

- _— (3.4)
gp(zv w) = g(z’ {D) - 9(207 wO) - 2if(Z0> wo)f(z’ ﬂj)
A direct computation shows that
of, Of L Of
a—zj(z, w) = (a_z] + QZZOj—)(z, w),
T,z w) = (1)), (33)
(Tgp)(z,w) = (Tg)(Z, @) — 2if (20, wo) (Tf) (Z, @)
Hence we infer
(Ljf) (zv @) = L]’fp('z’ w), (Tf)(z7 iD) = Tfp(zu w)a (3.6)

(T9)(Z, @) = Tgp(2,w) + 2if (20, wo)T f(2, w).
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Applying T to these equations, we can further get
(TLJf) (g’ w) = TLJ'};(Z7 w)? (TQJ?XZ {D) = T2jf;(za w)’
(T29)(Z, @) = T?g, (2, w) + 2i f (20, wo) T* f, (2, w).

By (3.4) and (3.6), we obtain

9y Jg e = Of  ___Of\\ - -
=2 =(=L 4 2iz5.—L — 2 2Ly 9=
5z, (z,w) (6zj + 2iZp; S zf(zo,wo)(azj + 2iZp; 8w))(z,w)

=(L;g)(3,@) — 2i%;(Tg)(Z, @) — 2i f (20, wo) (L; folz,w) — 25T f(Z,W)) @8
=(L;9)(Z,@) — 25T g,(2,w) = 2if (20, w0) L; fy (2, w).

Thus

(Ljg)(z,w) =L;gy(2, w) + 2if (20, wo) L; f (2, w). (3.9)
Applying T on this equation, we further get

(TL;g)(Z, @) =T L;gy(z,w) + 2i f (20, wo) TL; f(2,0). (3.10)
Write

Ly fp(z,w) Lyig,(z,w) + Qif(zo,wo)Llfp(z,w)

Lnflfp(z7 w) Lnflgp<z7 w) + Qif(ZO; wO)Lnfl.ﬁ)(za ’LU)
Tfp(z,w) Tg,(z,w) + 2i f (20, wo)T fp(z,w)

(3.11)
L1¢p(z7 U))

Ln,1¢‘p(2, w)
Tp(z, w)

By (3.6), (3.9) and (3.11), (3.3) has the form

Qp(z>w) =

Qp(z,w) = Py(z,w) P, (0)Q,(0). (3.12)



Step 1I. Express the CR Gauss map equation in terms of F
Recall that F) is defined by

. 1 At(p) 0
Fy(z,w) = ——==Fy(2,w) 0 1 : (3.13)
Ap) AP)
Rewrite it as F(z,w) = (fy gp ¢p)(2,w) - M(p), then M(p) takes the following form:
M, 0 M
0 557 0 . (3.14)
Ms 0 M,y
Write
R My =3 Yz, wo) M,
Mp) =] 0 3 0 . (3.15)
M3 —27¢t(20,w0) M,

Since M (p) is independent of (z,w), we have
(Lify Ligy Lid})(zw)
=(Lify Ligy Litp)(z,0) - M(p) (3.16)
=(Lify Ljgp+2if(20,w0)Lif, Lyiy)(zw) - M(p).

Similarly, we get

(Tf; Tg, Té)(zw) = (Tf, Tgy+2if(z0,w0)Tf, Tép)(z,w)  M(p). (3.17)
Set

Llf;(zaw) ng;(zaw) ngb;(z,w)

. ; @z, w) = .
Ln—lfp (Z,UJ) Ln_lgp(z7w) Ln—1¢p(zaw)
Tfp(zw)  (Tg)(zw) Tey(z,w)

Consider the n x N matrix (B Q%)(z,w). From (3.11), (3.12) and (3.18), we yield
(P Qp)(2,w) =(B, Qp)(2,w) - M(p)
(

P (z,w) =

p

(3.18)

:(PP(Z7 w) Py(z, w)Pp_l(O)Qp(O)) M(p) (3.19)
=P, (z,w)P,(0) - (P,(0) Q,(0)) - M(p)
=P,(z,w) B, 1(0) - (P2(0) Q5(0))



Hence we know

P} (z.w) = By(z,w) P, (O)PL(0), Qi) = Pz w)B (0)Q50),  (3.20)

p p

from which we deduce

Q;(z,w) = Py (z,w) (B (0)) ' Q;(0). (3.21)

By the normalization properties of I}, we know

Here we have set a = (ay,--- ,a,—1) and b = (by,--- ,by_,), where a; and by are defined by
(2.6). Hence (3.21) takes the form
Lg% (2, w) Lygy(z,w)
: 0 :
' = P (z,w) < ) = ' b. (3.22)
Ln_1¢%(z,w) ! b Ln1g;(z,w)
Tz, w) Tgy(z,w)

Step 1II. Express the CR Gauss map equation in terms of
We further express this system in terms of F*, which is defined as follows:

Tk 1 T * ~kx 1 *
fp = q*<z’ w) (fp (Z7 w) - a‘gp<27 w))? gp = q*<Z, w) gp- (323)
Here we have set
~ a~* 1 82 *
¢*(z,w) = 1+ 2icf; + (r —ilcef) g (z,w), ¢ = a—{i(()) = (a,b), r = §Re(8—j§(0)). (3.24)
Write ¢**(z,w) = m, then (3.23) and (3.24) give
*% ~—N; 12 g;
T (z,w) =1— 220—*(z,w) — (r —ilc| )—*(z,w)
q q
=1-2icf}*(z,w) — (r+ilc))g;* (z,w).
Together with (3.23), we know
re 1 . *k * 1 *K
fp = —q**(z7 w) (fp (Z, UJ) + c9, (Z,w)), 9p = q**(z,w) 9p - (325)
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Applying L; and T to (3.25), we yield
1

Lidh =z (L9 4097007 = (0 + b)) Lyg™),
1
2 (Q**(z,w))Q( (65" +bgy")a™ — (6" + gy )Tq™),
1

1
(q**(z7 w))Q (
Substituting these equations into (3.22), we get

T(¢," +bg,")a™ — (&," +bg," ) Tq™ = b(Tg, ¢ — 9,7 Tq™).

A quick simplification gives

Notice that ¢3* = O(](z,w)|?) and ¢;* = 1+ O(|(z,w)]). Hence (3.26) takes the form
a ok a Kk
a—%% = O(I(zw)P), 5-6;" = O(|(z,w)). (3.27)

Step 1V. Express the CR Gauss map equation in terms of F*
We express the system (3.27) in terms of the map Fj* defined by (2.9). (3.27) takes the
following form:

( 5z, )(zU,w) = O(|(z,w)|?), ( B

Step V. Express the CR Gauss map equation in terms of F;**
Let 7 € Auto(H,) and o € Auto(Hy) be given by (2.11) so that F;™* = 70 F)* o 0.
Then

) (zU,w) = O(|(z,w)?). (3.28)

& (z,w) = ¢, (0(2,w)) + O(|(z,w) ),

3.29
oz = (= = cw,w) + (|2, w)P) o2

Hence (3.28) takes the following form:
= Ol w)l), e = Ol )P (3.30)

This finishes the proof of the theorem.
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4 Some normalization properties

In this section, we will derive some properties for proper holomorphic maps between balls
that will be essential for the proof of our main theorems.

Let F : OH,, — OHy be a rational CR immersion. Assume the geometric rank o of F
at 0 is maximal with ko € [1,n — 2]. We also suppose that F' has the following expansion
near 0:

(fi =2+ 512w + djw? + O(|(z,w) ) for j < ro,
fi =2z +djw? + O(|(z,w)]?) for kg < j <n-—1,

n—1

ik = pgnzizn + 3 enjeznw + dpw? + O(|(z,w)[) for (4, k) € S, (4.1)
h=1 .

n—1

¢]k = Z €h7jk2hw + d]sz + O<|(Z,w>|3) fOl" (], k) E 81,
h=1

[ 9=w+O0((z,0)]%).
Let 7 € Autg(H,) and o € Auty(H,) be given by (2.11).
Lemma 4.1. Let F' = (f,g%,g) =710 Foo, where T and o are given in (2.11), then F has
the following expansion:
( A~ . . .
fi =7+ spiz0 + (dj = gpc;)w? + O(|(z, w) ) for j < ko,
fi =2z + djw? + O(|(z,w)]?) for kg <j<n-—1,

n—1

Qg]‘]{; = pr(z; — cjw)(zx — cxw) + > enn(zn — chw)w + djpw?
h=1

+O(](z,w)| ) fOT' (]7 k) € 807
~ n—1
O = 2 enge(zn — caw)w + dyw® + O(|(2,w)[°) for (4, k) € Si,
h=1
| 5= w+0((w)P).
Proof. A direct computation from (2.11) shows that
o(z,w) :<((zj — cjw) . (1 — 2i(¢, z) + i|c|2w))1§jgn_l,w(1 — 2i(¢, z) + i|c|2w)> (4.3)

+0(](z,w)]?).
For 1 <j <kpand kg+ 1<k <n—1, we have
fioo(z,w) =(z; — cjw) - (1 = 2i(C, 2) + i|c[*w) + %uj(zj — cjw)w
+djw® + 0(](z,w) ), (44
froo(z,w) =(z1, — cpw) - (1 = 2i(E, 2) + i|c|*w) + drw® + O(|(z, w)[?).
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Similarly, for (,1) € Sy and (5',1') € S, we get

o1 0 o(z,w) = iz — cjw)(z — qw) +

-1

3

—_

3

>
Il

1

ij’l’ e} O'(Z, U}) = Z eh,j’l’(zh — chw)w + dj’l’w2 —+ O(|(Z; U})|3)7

h=1

goo(z,w)=w(l-2i(cz) +ilc|*w) + O(|(z,w)]*).

Hence for 1 < j < kg and kg +1 <k <n-—1, we get

fioo(z,w)+ cjgoo(z,w) =z - (1 — 2i(E, z) +i|c|*w) + E,uj(zj — cjw)w
+djw? + O(|(z,w) ),

froo(z,w) + crgoo(z,w) =z, - (1= 2i(c, 2) + ilc|*w) + dpw® + O(|(z,w)*).

2

Substituting the formulas above into (2.11), we yield for 1 < j < k¢ that

fj :<zj . (1 —2i(c, z) + i\c\Qw) +

l

(25 — cpwlw + dij)

(14282 = ew) +ilelPw) + O( (2, w)P)

1

:Zj+2

pizjw + (d;

1

2

wici)w? + O(|(z,w)[).

Similarly, we obtain for kg +1 < k < n — 1 that
fr =2 + dw* + O(|(z,w)[%).

For ¢, we have

Ko
bj =iz — cjw)(z — qw) + Y enjizn — cpw)w

h=1

+ djw® + O(|(z, w) ) for (5,1) € S,

QAsﬂ — Z enji(zn — cpw)w + dﬂw2 +O(|(z,w)]?) for (j,1) € Si.

h=1
For g, we have

g =w(1—2i(c, 2) +ilc]*w) - (1 + 2i(¢, z — cw) + i|c|*w) + O(|(z, w)|*)

=w + O(|(z,w)|*).

The proof of Lemma 4.1 is complete.

14

enji(zn — cow)w + djlw2 + O(|(z,w)]*),

(4.5)

(4.8)

(4.9)

(4.10)



As a consequence of the lemma, we can further normalize the map (2.13) such that
€110 = 0 for o > Ky. (4.11)
Indeed, if we choose ¢; = 0 for 1 < j < kg, then

gz%.[j“") =e€jja —/Hjcafor 1 <j<ry<a<n-—1

Thus we can choose ¢, for kg + 1 < a < n — 1 such that gz@ﬁj“") =0 with kg < a <n—1.

By [HJXO06], the map has the following form:

( ok sk ok i .

S = 24 2w + O(|(z,w) ) for j < ko,

f;fj***) =z for kg < j <n-—1,
K0

¢z(a,jk = tprzize Y epngpznw + O(|(z,w) ) for (4, k) € Sy, (4.12)
h=1 .

n—1
o = X e+ O(1(z w)) for (k) € 5,

Here ep11q = 0 for ko +1 < a <n —1. Write

KO

q);***(l,l) — (Z eph,jk) (RS
h=1

Next, we recall some relations derived by analyzing the Chern-Moser equation. The
following relations are obtained in [HJY14] for the geometric rank equal to two case, which

in fact holds true independent of the geometric rank and the codimension of the maps.
As in [HJY14], write &;(2) =€ - Y (2). From [HIY14, (3.5)], we know

2OV (2) = = (21, s 2w9) - £(2) (4.13)
By a similar argument as in [HJY14, (4.3)], we obtain
o2 € Span{ey,--- ,en}. (4.14)
From [HJY14, (4.10)], we know
2Re(z/02)(2)) + |V + 90 (2) = 0, (4.15)

With these preparations, we arrive at the following main theorem of this section.

15



Theorem 4.2. Let F : OH,, — 0Hy be a CR immersion as in Theorem 1.1. For generic p
around 0, the associated vector &5~V (2 ) #0.

Proof. By Theorem 2.2, we can suppose that near 0, the expansion has the form (2.13).

Since @}~ 1)(z) is a smooth functlon with respect to p and <I>****(1 1)( ) = &1 (2) by
notation, it suffices to prove ®:1(z) # 0. Assume by Contradlctlon that @V (z) = 0. By
our notation, this implies e = £ = 0. From (4.13) and (4.14), we know

&1 = 512 = (4.16)

Next we would like to give some asymptotic properties of the coefficients F;***. For
1 < j < kg, we have

Bi(6) =(G2)l, = L0 = (G + 2550 ) ) o
=(E (), B p), - B ).
Here we have set
EP(p) = Li(f)(p) € «:"—1,
B (p) = (L (1) (), Li(brgern)) (0): - 5 Li(dra1) (p) € C" .
Then
E0) = (G2 + 205750 )0) .
:<Q~wQ1+%Wwﬂ}mp%MMmQ~~ﬂ>+0@)
and
(0,--+,0, 2ok, 0,- - ,0) + O(2), k< j,
B (p) = (2twkZok: fir(ern) 200e41)*** » Hitnn) Zo(n—1)) + O(2), k= j, (4.19)
0(2), k> j.

By the definition of Cj; (see [Hu99, p.17]), the asymptotic expansion of E;(p) given in
(4.18) and (4.19), we can suppose that C};, has the following form

Cir = (0(1),-++,0(1), 14 0(1),0,---,0),

16



where 14 o(1) is in the position corresponding to that of ¢, in f Since A defined by (2.4)
is unitary, we can use the implicit function theory to get that

(07 707_:u’jkz_0kuo7”' 707_,ujk%j707”' 7071707”' 70)+O(2) j<k7j§’<‘:07

C]k: (07707_2M3]Z_(]j707707170770)+O(2) ]:k7
(077071707a0>+0(2) j:’io—f—la
(4.20)
From (3.7) and f@Y(2) =0, we know for 1 < j < k¢ the following
Z LiT fi(p)an = 5152 + Z 2 gz + O(| (20, u0) )2 (4.21)
For kg +1 <7 <n—1, we have
n—1
V=N LT f(p)s = 0. (4.22)
k=1
For 1 <j <n—1, we have
1
190 =172, ,(0) = 571, (0) Z FOE O o)), (429
From (3.7), we know
LT6,(0) = =2 0(p) + 2y 0(p), T26,(0) = -2o(p). (420
IR 920w P 07 G2 ¥\P) P = D 2 PP '
Thus we get
Z S+ S T O (425
kih,k,h=1
and
O =04 (20) + O(I(z0, u0) ) = O(1(z0, uo) ). (4.:26)
Here the last equality follows from (4.16). From (3.10), we know
gV = " (L;Tg(p) — 2if (p) - LiTf(p))z = O(|(z0, o))z, (4.27)

g% = O(|(20, uo)])-

17



Notice that A(p) =14 O(2), thus for 1 < j < ky,

san b= =
QSPJJ _( fp'C;j)

A(p)
1,1 1)
=i+ (=215520;) +¢§m +O(1(20,u0) )2
(4.28)
g2+ Z 2¢321’“H”)z et Z ! Un+lithn)
k=1 k#h,k,h=1
+O(| (20, uo)[*) .
Similarly, we have
#(0,2) L~ =02 (In+21n) 2
f j - _f 'E f (|(207u0)| )’
- (A(p) 3 Z (4.29)
*(0,2
657 =0(| (20, u0)[*)-
Note that
« (1,1 0,2 (0,2
a,r=0(1), U=1I+o(1), U"=I+o(1), ;i = o(1), £;¥ = 0(1), 6,7 = o(1).
A straightforward computation shows that
(b;:?;u,n  Gppg0s % + Z 26 21k+1n)z o+ Z of! (In+lxtln)
k=1 k#£h,k,h=1
+ O(|(20, uo)|?) 2,
(I(z0, o) [*) (4.30)
A Zflﬁﬂn zor + O(|(20, u0) *),
w4 (0,2)
(bpj]( _O<|(ZO7 u0)|2)'
By Lemma 4.1, to make f;*** 02 _ 0, we need to choose ¢; for 1 < j < kg such that
22’ - 21
¢ = —— fror®? = Zf 20+ O(| (20, o) ). (4.31)
K Mg 1
From Lemma 4.1 and (4.30), we know
¢;?}*(171)(2) — Utjhj 20525 + Z 2035 21k+ln)z K2k Z i g
k=1 k£h,k,h=1 (4.32)

= 2y/5¢;2; + O(|(20, o) ") 2.
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sk (1,1)

Thus the coefficients of 2, term in ¢, 5" (z) is the following:

K0
+In I+1; +In (I +2In
[j<207u0) = ZIU‘J/’LJJZOJ + Q(bjj b 205 + Z (b( ! Zf ’
k#j,k=1 J k=1

+ O(|(20, uo)[*),
Ii(z0, up) =205 2 + 3~ @S 20+ O(|(20, wo) [2) for & # .
h#£k
(4.33)

If qﬁz*ﬁ(l 1) (2) = 0 in a neighborhood of 0, then I} (2, ug) = 0 in a a neighborhood of 0 for

1 <h<n-—1 From [}(z,up) = 0 for k # j, we know ¢Ik+[h+[ =0 for k # j and
1 <j<n-—1. From I;(z,up) =0, we get

I =0 for k # j,
4 4.34
) Sl g, (4.34)

VI

(2L +1In
— Utjfjj + 2925
Thus

sk (1,1 2[ +1n
(bp,jj( ) = ( — ipipg; + 2¢ ))Zojzja

20 (1,421,
& = = 170y 4 O 0, w))
J

(4.35)

For the pair (7j,1) satisfying 1 < j <1 < kg, by the asymptotic expansion of C};, we get

£(1,1) 1 = =nay
o0 =(—==1fp- C!
p,jl ( )\(p) p jl)
=;y’</m%o+@l~(AW%ﬁ+¢;P+ow%m@mz
i
= gHaHiFnz — QMlNJZZOJZZ+E 265 20n2 (4.36)

+ Z qb(l’“q'““" zonzk + O(| (20, u0) ) 2.
k#h e, h=1

19



We further know

(20 +1)
MgMgzZozzj - —Mluglzojzl + § 20 20k 2k

sk (1,1)
¢p,jl (Z) 2

2

k=1 (4.37)

+ Z o I sonzk — ez — pnciz + O(|(20, u0)|?) 2.

k#h,k,h=1
By comparing the coefficients of z;, term in gzﬁ**** 1, 1)( ), we obtain
¢§{h“k””> —0for h <1, (hk)# (' 3): (3.0, (1, 5), (1,1).
=iz + 205 20, + Z o5 2 — e =0,

9 J 4.38
h;éjh 1 ( ’ )

/I’IIMJIZO] 4 2¢]l11+1n Zo1 + Z 45 Il+1h+1n) zon — pjrc; = 0.

2 h#l,h=1

By the formula for ¢; in (4.35), we know ¢ Uit IntIn) — ) for (k,h) # (4,1),(l,7) and

(L+D+1) 201 .
_ E#J,uglJr% +I+ )+T]fl(1,+2l ) —0,
L+1n) 2wlz (I;+2I,,) (4.39)
G+ I+In 21,
- §/~Llﬂgl +¢]l l +—= f] =0.
Hj
Eliminating gb U+1t1) i the above system, we get
2' ? 21
Lo f (I+2In) _ L+ _fl(ll—l—ZIn)' (4.40)
ot 2
Write
A = fi(I¢+21n) B, = ¢(211+1n (4.41)
Then by (4.34) and (4.40),
. 4i
— Zuj,ujj + QB]' + —AJ = 0.
. . Vi (4.42)
1 ‘+2ZAA_Z +22A
2! T TR T
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From (4.39), we get

(4041 _ 2u415
gl 2 I3 n

By the asymptotic expansion of Cj, for 1 < j < rky <a <n —1, we get

Ppia. ( )

u]aan) + cbpljl +O(I(20, u)[*)

(204+1)
zuj,ujaz()az] + Z 2050 2ok 2k

+ Z gb(thkH” zonzk + O(| (20, u0) ) 2.
k#h ke, h=1

We further know

sk (1,1 (2Ix+In)
gbp,ja( )(z) :ujlu]aanZ] +22¢j K Zokzk

k=1

2

+ Z ¢g SR ~ HjaCa?Zj — MjaCiza + O(| (20, uo)[*)2-

kh,k,h=1

By comparing the coefficients of 2, term in ¢ (2), we obtain

Py

¢§i’l””“ = 0 for (b, k) # (5, 5), (j, a), (@, ).

n—1
2[ +1, Li+1p+1y
2:“’]”]042004 + 2¢ ) 20j + Z (b;of " )ZOh — HjaCa = O,
hej,h=1
n—1
Io+Ip+1n)
> Oz — pgac; = 0.
h#a,h=1

By the formula for ¢;, we know ¢;, Untlitln) —  for (h, k) # (j, @), (a, 7) and
Ta+In
zugumz()a + 5 200 = paca,

jor — Hjac; = 0.

21

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)



Hence

(Ii+1a+1n) 20 L(14200) 2
Dja = pja(——)f;" =-———A4;. 4.48
J J [ J \/;u_] J ( )
By considering gb;j‘;;(l’l)(z) for (a, 8) € 81, we know gbf/é” =0.

Furthermore, by [HJY,(4.10)], we have
2Re(Zf19(2)) + | fHD () + 160V ()" = 0.

Making use of (2.13), (4.34) and (4.41), we get
) )
iD= 5 Hi% £ = Az for 1< j <k,
f}ilvl) - f;im) =oM) =0for kg +1<j<n—1.

2
Substituting these relations back to (4), we obtain Re(4;) = —%. Combining this with

the latter equation of (4.42), and collecting the imaginary part of its both sizes, we further
obtain p; = py. Together with (4.42), we yield A; = Ay, and B; = Bj,.
On the other hand, by [HJY,(4.17)], we know

2( — 221D (2)] 22 +i®F0 (=) @52’%)) |22 + 650 (2)2 = 0. (4.49)
Substituting into this equation, we get

a , — i 211
— 42 Aj|2j|2|2’4 + 2@{ Z ,ujjz? : BjZJ2 + Z HikZiZk (é,ujujk - Iu;: Ak)ZjZk
j=1

1<j<ko 1<j<k<ko

2Z 3,0
+ X HemE oAl £ PO =0

1<j<ko<an—1 J
(4.50)
After a direct simplification, we obtain:
3,0
|‘I)§ )(Z)P = ( Z /ij|zj’2)2|Z’2- (4.51)

1<j<ko

This means that (<I>§3’°’ (2)) is a vector of dimension 3k (ko4 1)(n—ro)+ ko (ko +1) (Ko +2).
Hence the third degeneracy dimension is

n+ (n _ 1) 44 (Tl — /{/0) —+ %/{0(/{0 + 1)(77, — :‘io) + élﬁo(/ﬁo + 1)(/‘10 + 2) (4 52)
I% (3(,€0 +3)n — (ko + 1)(260 + 1)).

[
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5 Proof of the main theorems

With (3.1) and Theorem 4.2 at our disposal, we are now in a position to prove our main
theorems.

Proof of Theorem 1.1. We prove Theorem 1.1 by absurdity. Suppose that the geometric
rank of the map is k¢ € [1,n—2] and the map satisfies the degeneracy rank or the degeneracy
dimension conditions. We will prove that the CR Gauss map of the map F must be non-
degenerate. Write M = {p € 0B" : Rkp(p) = ko}. It will suffice to show the non-degeneracy
of the Gauss map for pg € M. This is because, if so, dimgy(M) = 2n—1 while dimg~y(OB™\
M) < dimgoB™ \ M < 2n — 2, which would be non-generic. Due to Theorem 2.2 and
Theorem 4.2, we also suppose at py € M, F has the form (4.12) and has the additional

ootk (1,1

condition ¢p, ) % 0. Without loss of generality, we suppose that py = 0.
For every p close to 0, write
00 ,
o = T iu®)an + D (p)w + 0(2),
J h=1
1 (5.1)
kKoK h n
Tor@ =3 "1 (p)zn + Tl (p)w + O(2).
h=1

Denote by Y(p) the following n(N — n) X n matrix

1 n
T(p) = (P80) TEL®) - TI®) 1o (5.2)

By our normalization properties, we know, for 1 < j < kg and ko + 1 < a < n — 1, the
following

0 @ e

8_21 lo — MlaZas gcbja = HjaZj- (53)

(07

n—1
If ej 1y # 0, then %gb,(j) = > Apzp + 7w for some 7 # 0. Hence we must have Y(0) is of
’ h=1

rank n. Notice that T(p) = T(0) 4+ o(1), hence when p is sufficiently close to 0, T(p) is also
of rank n.

By the implicit function theorem, there is a small neighborhood U of 0, such that for
every point p € U, (3.3) has only one solution in some neighborhood V. Choose U; C U
sufficiently small such that the solutions are contained in V; which is also very small and
(z + 2,w + 1 + 2i22) € UNV for (2,4) € U and (2,w) € Vi. Then for generic point
(z0,wo) € Uy, (3.3) has only one solution (z,w) with (z,w) € U, which means that the CR
Gauss map is non-degenerate. ]
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Proof of Theorem 1.2. Since there are n functions in the mapping containing linear terms,
we have

1 1
d3 <N —-n< §(m0 + 1) (ko + 2)n — 6/@0(%0 +1)(2kp+1)—n
Ko

= 0 (300 + Bn — (0 + 1) 280+ 1)).

Namely, the condition in (2) of Theorem 1.1 holds true and the proof of Theorem 1.2 follows
directly.
O
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