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Abstract. In this paper, we investigate germs of smooth real hyper-

surfaces in Cn. We show that if the hypersurface is of infinite D’Angelo
type at a point, then there exists a formal complex curve in the hyper-

surface through that point.

1. Introduction

Let M be a germ at p ∈ Cn of a smooth real hypersurface in Cn and r be a
smooth local defining function for M in some open neighborhood U ⊂ Cn of
p. Hence M = {z ∈ U : r(z) = 0} with dr(p) 6= 0. An interesting question is
whether there exists a germ of a complex curve in M passing through p. This
question was first studied by D’Angelo in [4] and was later on shown to be
closely related to the regularity of ∂-Neumann problems over pseudoconvex
domains. See for instance a series of papers of Catlin [1] [2] [3] for references.
D’Angelo’s approach to this geometric question is by measuring the maximum
order of contact to M of all complex curves passing through p, called the
D’Angelo type.

Precisely speaking, given a germ of a nonconstant holomorphic curve ζ :
(C, 0) → (Cn, p), denote by ν(ζ) the lowest order of vanishing at 0 of all the
components of ζ(t)−ζ(0), and by ν(r◦ζ) the order of vanishing of the function
r ◦ ζ at 0. The normalized order of contact of the curve ζ with M at p is

∆(M,p, ζ) :=
ν(r ◦ ζ)

ν(ζ)
.

The D’Angelo type of M at p is defined as follows.

∆(M,p) := sup
ζ

∆(M,p, ζ) = sup
ζ

ν(r ◦ ζ)

ν(ζ)
,
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where the supremum is taken over all germs ζ of nonconstant holomorphic
curves passing through p. We say that p is a point of finite type if ∆(M,p) <∞
and of infinite type otherwise.

We note that the D’Angelo type of M at p defined as above is independent
of the choice of its defining function. Moreover, in spite of the algebraic
definition of the D’Angelo type, D’Angelo was able to relate the infinite type
to the geometric property about the existence of complex curves in M if M
is in addition real analytic:

Theorem 1. [5] If M is a germ at p of a real analytic real hypersurface in
Cn, then ∆(M,p) =∞ if and only if there exists a germ at p of a convergent
complex curve ζ(t) : (C, 0) −→ (Cn, p) lying in M .

In this paper, we prove the formal analogue of this result. Consider a germ
M of infinite D’Angelo type at p of a smooth real hypersurface in Cn. Instead
of expecting the existence of a convergent complex curve in M through p, we
consider formal complex curves through p. Namely, we focus on expressions
of the form ζ = (ζ1, . . . , ζn) : (C, 0) → (Cn, p), where each component ζj is a
formal power series in the complex variable t ∈ C and ζ(0) = p. Here for a
formal power series h, the equality h(0) = c means that the constant term of
h is equal to c. Write h ∼ 0 if all the coefficients of the power series of h are
0. Moreover, for any two formal power series h1 and h2, we say h1 ∼ h2 if
h1−h2 ∼ 0. As a generalization of D’Angelo’s theorem, we show the following
formal version for infinite D’Angelo type points:

Theorem 2. Let M be a germ at p of a smooth real hypersurface in Cn with
a smooth local defining function r. Then ∆(M,p) = ∞ if and only if there
exists a nonconstant formal complex curve ζ : (C, 0) −→ (Cn, p) such that
r ◦ ζ ∼ 0.

When r ◦ζ ∼ 0, we also call ζ a formal curve in M . The sufficient direction
of the theorem is trivial. For the necessary direction, the proof of the formal
analogue is slightly different from that of the convergent case. Indeed, in the
original proof of D’Angelo’s convergent case, the crucial tool is the Nullstellen-
satz Theorem for holomorphic functions. However to the authors’ knowledge,
Nullstellensatz Theorem is not available for the formal case in the literature.
Moreover, D’Angelo’s decomposition of the defining function does not fit well
in the formal case, either. In this paper, we will use a different decomposition
that works for the formal case and prove a formal Nullstellensatz stated as
follows. In detail, denote by nO0 the ring of germs of formal complex power
series at 0 in Cn. The key ingredient of our result is the following formal
Nullstellensatz:

Theorem 3. Let I be an ideal in nO0. If dim(nO0/I) = ∞, then there is a
formal complex curve ζ : (C, 0) −→ (Cn, 0) such that e ◦ ζ ∼ 0 for all e ∈ I.



FORMAL COMPLEX CURVES IN REAL SMOOTH HYPERSURFACES 3

The outline of the paper is as follows. In Section 2, we introduce some
notations and background. In Section 3, we go over the theory of the formal
complex power series ring. Section 4 is devoted to the proof of Theorem 3. In
the last section, we complete the proof of our main Theorem 2. The authors
are grateful to Steven Krantz for suggesting this problem.

2. Notations and background

From now on and throughout the rest of the paper, let M ⊂ Cn be a
smooth real hypersurface near p = 0 defined by a smooth function r in an
open subset U ⊂ Cn, dr(0) 6= 0.

2.1. Decomposing the defining function of M . Given a multi-index J =
(J1, . . . , Jn), let |J | :=

∑n
j=1 Jj . For two multi-indices J = (J1, . . . , Jn),

K = (K1, . . . ,Kn), we say J < K in terms of lexicographic order if either
|J | < |K|, or |J | = |K| but the first nonequal component in J is less than
that in K.

Since r(0) = 0, there exists a sequence (aJK)|J|+|K|≥1 such that r can be
formally written as follows.

r(z) ∼ <
∑
|J|≥1

aJ0z
J + 4<

∑
|J|≥1

∑
K≥J

aJKz
JzK

∼ <
∑
|J|≥1

aJ0z
J + 4<

∑
|J|≥1

zJ
∑
K≥J

aJKz
K

∼ <
∑
|J|≥1

aJ0z
J +

∑
|J|≥1

∣∣∣∣∣∣zJ +
∑
K≥J

aJKz
K

∣∣∣∣∣∣
2

−
∑
|J|≥1

∣∣∣∣∣∣zJ −
∑
K≥J

aJKz
K

∣∣∣∣∣∣
2

.

Write h :=
∑
|J|≥1 aJ0z

J , fJ := zJ +
∑
K≥J aJKz

K and gJ := zJ −∑
K≥J aJKz

K for |J | ≥ 1. Hence we have the following decomposing of r:

r ∼ <h+
∑
|J|≥1

|fJ |2 −
∑
|J|≥1

|gJ |2(1)

with ν(fJ) ≥ |J | and ν(gJ) ≥ |J |.
We remark that for the above decomposition, if we truncate r at any or-

der k, only finitely many fJ ’s and gJ ’s remain in the expression (1). For
simplification of notation, we write f := (fJ)|J|≥1 to denote the formal in-
finite sequence with fJ the J ’th term in the sequence. We similarly write
g := (gJ)|J|≥1.
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2.2. Infinite matrices. Denote by M the collection of all infinite square
matrices with complex numbers as entries. For any matrix A = {aij}∞i,j=1 ∈
M, let A∗ = {aji}∞i,j=1 denote the adjoint matrix of A. Let Id ∈ M be
the infinite diagonal matrix with 1 for all diagonal entries and 0 otherwise.
Consider the two subsets of M:

M0 :=

{
A ∈M :

∑
j≥1

|aij |2 ≤ 1 for all i,
∑
i≥1

|aij |2 ≤ 1 for all j

}
;

M1 :=

{
A ∈M0 : AA∗ = A∗A = Id

}
.

Here given two matrices A = {aij}∞i,j=1, B = {bk`}∞k,`=1 ∈ M0, AB =

{ci`}∞i,`=1 is defined in terms of formal matrix product. Namely, ci` =
∑
k≥1

aikbk`.

Let `2 be the infinite sequences of complex numbers c = (cj)j≥1 with norm
‖c‖2 =

∑
j≥1

|cj |2 finite. Hence M1 ⊂M0 is the set of unitary linear operators

between `2.

In the upcoming Lemma 5 of a later section, we will construct elements in
M1 of the following form:

A =

[
Ak 0
0 Id

]
,

where the first block Ak is some k by k unitary matrix.

Here are some facts of M1 from basic functional analysis:

• If A ∈M1, then ‖Ac‖ = ‖c‖ for any c ∈ `2.

• For any sequence {Uk =
(
ukij
)∞
i,j=1
}∞k=1 ⊂ M1, after passing to a

subsequence if necessary, one can always assume that Uk converges
weakly to some U = (uij)

∞
i,j=1 ∈ M. Equivalently, for each fixed

i, j ∈ Z+, ukij → uij as k →∞. Moreover,
• If U ∈M is a weak limit of some sequence inM1, then U ∈M0 and
‖Uc‖ ≤ ‖c‖ for any c ∈ `2.

3. Ideals in the formal complex power series ring

Let e(z) =
∑
bJz

J be a germ of a formal power series at 0. Then e is
said to be a germ of a convergent series if e is convergent as a power series
in some neighborhood of 0. The ring of germs of all convergent power series
at 0 is called the ring of germs of holomorphic functions at 0, denoted by

nO0. Standard holomorphic function theory states that nO0 is a local ring,
hence Noetherian. Equivalently, every ideal in nO0 has a finite basis. In

nO0, there are two useful tools: the Weierstrass preparation Theorem and the
Weierstrass division Theorem. Associated with each ideal I ⊂ nO0, there is
a complex analytic variety consisting of the common zeroes of all elements in
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I. Those varieties have a nice local parametrization by further constructing
a regular system of coordinates for I.

Even though one does not expect the formal version of the geometric
parametrization to hold for the formal complex series ring, the formal com-
plex power series ring do inherit many parallel algebraic properties from its
convergent counterpart. For convenience of the reader, we outline in the fol-
lowing some properties of the formal complex power series ring nO0 that will
be used in our paper.

Denote by n−1O0[zn] (as a subring of nO0), the polynomial ring over n−1O0

in the variable zn. An element e ∈ n−1O0[zn] is called a Weierstrass poly-

nomial of degree ` in zn if it is of the form e(z) = z`n +
`−1∑
j=0

bjz
j
n where the

coefficients bj ∈ n−1O0 are nonunits (i.e., bj(0) = 0) for 0 ≤ j ≤ `− 1. Then
we have

• nO0 is a local ring. In particular, nO0 is Noetherian.
• Formal version of the Weierstrass preparation Theorem: Let e ∈ nO0

be regular of order ` in zn. Then there is a unique Weierstrass poly-
nomial ẽ ∈ n−1O0[zn] of degree ` such that e = uẽ for some unit
u ∈ nO0.
• Formal version of the Weierstrass division Theorem: Let ẽ ∈ n−1O0[zn]

be a Weierstrass polynomial in zn of degree `. Then any e ∈ nO0 can
be written uniquely as e = pẽ+ q, where p ∈ nO0 and q ∈ n−1O0[zn]
is a polynomial of degree less than ` in zn.

The interested reader may refer to [7], [8] for more details about the properties
of nO0.

Given f1, . . . , f` ∈ nO0, denote by I(f1, . . . , f`) the ideal in nO0 generated
by f1, . . . , f`. Let H0 be the maximal ideal in nO0 consisting of those formal
complex power series whose constant term vanishes. For a proper ideal I ⊂
nO0, we define the dimension of I by

D(I) := dimC nO0/I.

Since D(I) < ∞ if and only if Hk
0 ⊂ I for some k ∈ Z+, we have the

following lemma:

Lemma 1. Let I1, I2 be two proper ideals in nO0. Then D(I1 ∩ I2) = ∞
implies either D(I1) =∞ or D(I2) =∞.

Proof of Lemma 1: Suppose that both D(Ij) <∞. Then for some positive

integers k1, k2 we have that H
kj
0 ⊂ Ij , j = 1, 2. Hence H

max{k1,k2}
0 ⊂ I1 ∩ I2

and D(I1 ∩ I2) <∞. This is a contradiction. �

We also similarly define the formal radical of an ideal I as follows.
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√
I := {e : there exists k ∈ Z+ such that ek ∈ I}.

Lemma 2. Let I be a proper ideal in nO0. D(I) =∞ if and only if D(
√
I) =

∞.

Proof of Lemma 2: Suppose that D(
√
I) < ∞. Then there exists some

positive integer k such that Hk
0 ⊂

√
I. Let e1, ..., es be generators of Hk

0 .
Then any e ∈ Hk

0 can be written as e =
∑
gjej for some gj ∈ nO0, and

erii ∈ I for some positive integer ri. Therefore, for any e ∈ Hk
0 , e

r1+···+rs ∈ I,
or equivalently, HK

0 ⊂ I with K = r1 + · · ·+ rs. This would imply D(I) <∞,
This is a contradiction. The other direction is trivial. �

Given a proper ideal I of nO0, following the idea in Gunning [6], we con-
struct a regular system of coordinates z1, . . . , zn such that there exists an
integer k satisfying
a) kO0 ∩ I = {0};
b) j−1O0[zj ] ∩ I contains a defining Weierstrass polynomial pj in zj for each
j = k + 1, . . . , n.

If in addition I is prime, the theorem of the primitive element guarantees
that, by making a linear change of coordinates in the zk+1, . . . , zn plane if

necessary, the quotient field nH̃0 of nO0/I is an algebraic extension of kÕ0 so

that nH̃0 = kÕ0[z̃k+1]. Here kÕ0 is the image of kO0 in nO0/I and z̃k+1 is
the image of zk+1 in nO0/I. We call the above regular system of coordinates
a strictly regular system of coordinates.

Assuming such a strictly regular system of coordinates as above, denote
by E ∈ kO0 the discriminant of the unique irreducible defining polynomial
pk+1 of zk+1. Then for each coordinate function zj , n ≥ j ≥ k + 2, we can
construct qj(z) := E ·zj−Qj(zk+1) ∈ I∩kO0[zk+1, zj ] for some Qj(·) ∈ kO0[·].
The ideal I(pk+1, qk+2, . . . , qn) generated by the elements pk+1, qk+2, . . . , qn
is called the associated ideal for I.

Using exactly the same argument as in [6], the relationship between the
above constructed associated ideal I(pk+1, qk+2, . . . , qn) and the original ideal
I in the formal case can be formulated as follows.

Lemma 3. [6] There exists an integer ν such that

EνI ⊆ I(pk+1, qk+2 . . . , qn) ⊆ I.
Here E is the discriminant of pk+1 in zk+1 and I(pk+1, qk+2 . . . , qn) is the
associated ideal of I.

4. Formal Nullstellensatz

In the convergent case, the zero set of a Weierstrass polynomial contains
at least a complex curve. The next lemma generalizes this fact to the formal
case:
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Lemma 4. Let e be a formal Weierstrass polynomial in w. Denote by Ee the
discriminant of e. Suppose that Ee(z1, . . . , zk) 6≡ 0, then there exists a formal
curve ζ such that e ◦ ζ ∼ 0 .

Proof of Lemma 4: Write e(z1, . . . , zk, w) = w` +
∑
j<` bj(z1, . . . , zk)wj ,

bj(0) = 0. After a linear change of coordinates in (z1, . . . , zk), we can assume
that Ee(z1, 0, . . . , 0) 6≡ 0. Restricting to the subspace defined by {z2 = · · · =
zk = 0}, it suffices to find a formal curve passing through 0 in C2(3 (z1, w)) on

which e vanishes. Hence we assume we are in C2. Write Ee(z1) =
∑∞
j=s ajz

j
1

where as 6= 0. For a fixed r >> s, we consider a truncation er of e up to order
r and the corresponding discriminant Eer . Then Eer is a symmetric function
in the roots of er, and can still be written as Eer(z1) = asz

s
1 + o(zs1).

On the other hand, if we write er(z1, w) = Πj≤`(w − αrj(z1)), then the
expression for Eer leads to the estimate |αrj(z1)−αri (z1)| ≥ c|z1|s for some small
c independent of z1, |z1| small, when i 6= j. For a fixed z1, let ∆(αrj(z1), ε|z1|s)
be the disc in w plane centered at αrj(z1) with radius ε|z1|s for each j with ε
small enough. Then those discs do not intersect with each other and outside
the union of these discs, |er| ≥ (ε|z1|s)`. In the same manner for all higher
truncations with ρ > r >> s`, we have as well that |eρ| ≥ (ε|z1|s)` and that
the zeroes of eρ are contained in the union of these discs by shrinking z1 if
necessary. This means that for all ρ >> s`, the zero curves for eρ are all
trapped in the union of those discs with radius ε|z1|s, which can be again
made arbitrarily small by shrinking z1. Thus by letting ρ go to infinity and
passing to a subsequence of those zero curves for eρ if necessary, some formal
limit, say ζ, exists. By construction, e vanishes to infinite order on ζ. �

We generalize the above lemma and show that formal ideals of infinite
dimensions must vanish on some formal curve.

Proposition 1. Let P ⊂ nO0 be a prime ideal with D(P ) = ∞. Then there
exists a formal curve ζ : (C, 0)→ (Cn, 0) such that e ◦ ζ ∼ 0 for all e ∈ P .

Proof of Proposition 1: We first choose coordinates z1, . . . , zn such that P
is strictly regular under this system of coordinates in the spirit of Section 3.
Note that since D(P ) =∞, k ≥ 1.

Consider the associated ideal I(pk+1, qk+2 . . . , qn) of P . Since the dis-
criminant E of pk+1 is not identically zero, apply Lemma 4 to pk+1 and
we get a formal power curve ζ ′ = (ζ1, ζ2, . . . , ζk+1) : (C, 0) → (Ck+1, 0) such
that pk+1 ◦ ζ ′ ∼ 0. We note that the curve can always be chosen so that
E ◦ (ζ1, . . . , ζk) 6≡ 0.

Next, we add the remaining components ζk+2, ..., ζn so that the ideal P
formally vanish on the formal curve given by ζ := (ζ1, . . . , ζn). Recall that for
each j > k + 1, qj = E · zj − Qj(zk+1) ∈ P for some Qj ∈ kO0[·]. We define
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ζj(t) := (Qj/E)|(z1,...,zk+1)=ζ′(t) for j = k + 2, . . . , n. Hence the associated
ideal I(pk+1, qk+2 . . . , qn) formally vanishes on ζ(t) = (ζ1(t), . . . , ζn(t)).

We will show that (Qj/E)|(z1,...,zk+1)=0 = 0 and hence ζ(0) = 0. It will
suffice to prove that zj = ζj(t) is one of the formal roots for the defining
Weierstrass polynomials pj ∈ kO0[zj ], j = k + 2, . . . , n. Indeed, for each j >
k+ 1, denote by nj the degree of pj ∈ kO0[zj ] with respect to zj and consider
Rj := Enjpj . Then Rj ∈ kO0[E · zj ]. Substitute E · zj in the expression of

Rj by qj + Qj . We get Rj = H(qj) + G(Qj) for some H(qj) =
nj∑̀
=1

bj · (qj)`

with bj ∈ kO0 and G(·) ∈ kO0[·]. Since Rj , H(qj) ∈ P , so G(Qj) ∈ P and
hence G(Qj) ∈ kO0[zk+1] ∩ P . Since moreover pk+1 ∈ kO0[·] is the defining
polynomial in P for zk+1, G(Qj) is divisible by pk+1. By the construction of
ζ ′, we have thus G(Qj(ζ

′)) ∼ 0. On the other hand, H(qj(ζ)) ∼ 0. Hence
Rj ◦ ζ = H(qj(ζ)) + G(Qj(ζ

′)) ∼ 0. This further implies pj ◦ ζ ∼ 0 since
E ◦ (ζ1, . . . , ζk) 6≡ 0. Therefore, zj = ζj(t) is one of the formal roots for the
defining Weierstrass polynomials pj .

Finally we show that for any e ∈ P , e vanishes on the formal curve ζ.
Indeed, by Lemma 3, there exists some large positive number ν, such that
Eνe ∈ I(pk+1, qk+2 . . . , qn). Therefore (Eνe) ◦ ζ ∼ 0. Since E vanishes only
to finite order on the curve, we get e ◦ ζ ∼ 0. �

Recall that an ideal I is primary if, whenever xy ∈ I, either x ∈ I or ym ∈ I
for some m ∈ Z+. We are now in a position to prove Theorem 3.

Proof of Theorem 3: By the Lasker-Noether decomposition theorem, we
can write I = P1 ∩ · · · ∩ Ps, where Pj ’s are primary ideals. Since D(I) =∞,
applying an induction process by Lemma 1, we have D(Pj) = ∞ for some

j ∈ {1, . . . , s}. On the other hand, Lemma 2 implies D(
√
Pj) = ∞. Notice

that
√
Pj is also prime. Proposition 1 thus implies the existence of a formal

curve ζ such that ζ(0) = 0 and e◦ζ ∼ 0 for all e ∈
√
Pj . Since I ⊂ Pj ⊂

√
Pj ,

e ◦ ζ ∼ 0 for all e ∈ I. The proof of Theorem 3 is thus complete. �

5. Existence of formal complex curves

Given a formal complex power series h and a positive integer k, we call
jk(h), the k-jet of h, the truncation in h up to order k. A slight change of
D’Angelo’s theorem gives the following lemma.

Lemma 5. Let h, f and g be defined by (1) as in Section 2.1 for the given
defining function r of M . Let ζ : (C, 0)→ (Cn, 0) be a formal complex curve.
If j2kν(ζ)(r ◦ ζ) = 0, then there is an infinite unitary matrix Uk ∈ M1 such
that

(2) j2kν(ζ)(h ◦ ζ) = jkν(ζ)((f − Ukg) ◦ ζ) = jkν(ζ)((U
∗
kf − g) ◦ ζ) = 0.
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Proof of Lemma 5: If j2kν(ζ)(r ◦ ζ) = 0, then j2kν(ζ)(h ◦ ζ) = 0 and

j2kν(ζ)(‖f ◦ ζ‖2) = j2kν(ζ)(‖g ◦ ζ‖2). Thus ‖jkν(ζ)(f ◦ ζ)‖2 = ‖jkν(ζ)(g ◦ ζ)‖2.
Note that for each k, the above norms involve only summations of finite many
terms since there are only finitely many components in f and g with non-
vanishing k-jets by our construction. For these finitely many fJ ’s and gJ ’s,
applying Theorem 3.5 [4], one can find an element Ũ of the group of unitary
matrices with a finite size such that

jkν(ζ)((f − Ũg) ◦ ζ) = 0.

Extending Ũ to an infinite unitary matrix U ∈ M1 by letting the rest of the
diagonal entries be 1 and the other terms 0, we obtain (2). This choice of U
also makes jkν(ζ)((U

∗f − g) ◦ ζ) = 0. �

From now on, we consider the ideal generated by all the components in
(h, f −Ug, U∗f − g) for some U ∈M1. The following proposition reveals the
connection between the null set of I(h, f − Ug, U∗f − g) and that of I(r).

Proposition 2. Let h, f and g be defined by (1) as in Section 2.1 for the
given defining function r of M . Let ζ : (C, 0) → (Cn, 0) be a formal complex
curve. If there exists an operator U ∈ M0 as a weak limit of a sequence in
M1 such that e ◦ ζ ∼ 0 for any e ∈ I(h, f − Ug, U∗f − g), then r ◦ ζ ∼ 0.

Proof of Proposition 2: If a formal curve ζ satisfies h ◦ ζ ∼ (f −Ug) ◦ ζ ∼
(U∗f − g) ◦ ζ ∼ 0, then for any positive integer k, jk(h ◦ ζ) = 0 and

‖jk(f ◦ ζ)‖ = ‖jk(Ug ◦ ζ)‖ = ‖U(jk(g ◦ ζ))‖
≤ ‖jk(g ◦ ζ)‖
= ‖jk(U∗f ◦ ζ)‖ = ‖U∗(jk(f ◦ ζ))‖
≤ ‖jk(f ◦ ζ)‖.

Hence, ‖jk(f ◦ ζ)‖ = ‖jk(g ◦ ζ)‖ for any k. Letting k go to infinity, we see
that h ◦ ζ ∼ ‖f ◦ ζ‖2 − ‖g ◦ ζ‖2 ∼ 0 and therefore we get r ◦ ζ ∼ 0. �

Theorem 2 follows directly by combining Proposition 2 and Proposition 3,
together with Theorem 3 in the previous section.

Proposition 3. Let h, f and g be defined by (1) as in Section 2.1 for the
given defining function r of M . Assume M is of infinite D’Angelo type at 0,
then there exists U ∈ M0 which is a weak limit of a sequence in M1, such
that D(I(h, f − Ug, U∗f − g)) =∞.

Proof of Proposition 3: Since the hypersurface is of infinite type at 0, for
any order k ∈ Z+, there is a unitary matrix Uk ∈M1 as in Lemma 5 such that
(2) holds. Let U ∈ M0 be a weak limit of {Uk} by passing to a subsequence
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if necessary. Suppose that I(h, f − Ug,U∗f − g) has finite dimension. Then
there exists an integer ` such that H`

0 ⊂ I(h, f −Ug,U∗f − g). By the upper
semi-continuity of D(I), this would then imply H`

0 ⊂ I(h, f − Ukg, U∗kf − g)
that for all k larger than some k0 ∈ Z+. This is a contradiction to Lemma
5. �
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