

A Quick Course in R

A Quick Course in R, Dan Yorgov 2 of 73

1 Introduction

What is R?

R is free statistical software.

R is high level programing language.
o It is an open source implementation of the S

programming language.
oOfficial description is: R is free software environment

for statistical computing and graphics.
oA lot of extensions. Users can write functions and easily

add software libraries, a.k.a. packages, to R.
oMore than ten thousand packages are available form the

official R depositary. Even more at GitHub.

A Quick Course in R, Dan Yorgov 3 of 73

R is interactive: you type what you want and get out results.
Much easier to get started as you can immediately address
syntax and other errors.

RStudio is free, open-source IDE (integrated development
environment) for R.

o Commonly used as it makes life easier. syntax highlighting,
interactive autocomplete, easier data/object/graph viewing, etc.

RStudio and R can be automatically installed via Purdue
Fort Wayne software deployment system on classroom and
lab computers.

oDouble click at the Purdue FW Software Center icon at
your Desktop and search for RStudio. Both R and
RStudio will install automatically.

A Quick Course in R, Dan Yorgov 4 of 73

Installation:
oDownload from https://cloud.r-project.org/ (or just

google "download R").
oSave the executable file and remember the location.
oDouble click the file and follow the instructions.
oOnce the installation is complete, double click the icon

on your Desktop to start an R session.
oTest R by computing 2+2 (or something else :).

oTo quit R, type q().

To quickly run something in R (without actually installing
R) you can use an online emulator in a web browser, e.g.:
https://www.tutorialspoint.com/execute_r_online.php

A Quick Course in R, Dan Yorgov 5 of 73

2 Help

There are many ways to get help for R:

On the Internet at www.r-project.org
If you know the command you want help for, from the
command line type:

help(command, e.g., help(lm)
?command, e.g., ?lm

If you only know the topic you want help for, from the
command line type:

??topic, e.g., ??logarithm
Many online resources. We recommend Quick-R for a quick
external reference:
https://www.statmethods.net/about/sitemap.html

A Quick Course in R, Dan Yorgov 6 of 73

3 Data Structures

R operates on data structures. A data structure is an object,
some sort of "container" that holds certain kinds of
information.

Common R data structures:
Vector (a sequence of numerical, character,
factor/categorical, or logical elements of the same type)
Lists (collection of other objects, e.g., vectors of any type
and any length)
Matrices/Arrays (multi-dimensional collection of vectors of
the same type and same length)
Data Frame (list of vectors of equal length but possibly
different data types)

A Quick Course in R, Dan Yorgov 7 of 73

A vector is a sequence of values of the same data type.

The c function (concatenate) can be used to join data from end
to end to create vectors.

The calls below will create numeric, character, and Boolean
vectors.

c(1, 2, 5.3, 6, -2, 4)
c("one", "two", "three")
c(TRUE, FALSE, TRUE)

A Quick Course in R, Dan Yorgov 8 of 73

The seq function (from sequence) can be used to create an
equidistant series of values.

A sequence of numbers from 1 to 10 in increments of 1.
seq(1, 10)
1:10

A sequence of numbers from 1 to 20 in increments of 2.
seq(1, 20, by = 2)

A sequence of numbers from 10 to 20 of length 100
seq(10, 20, len = 100)

A Quick Course in R, Dan Yorgov 9 of 73

The rep function (from replicate) can be used to create a
vector by replicating values.

Repeat the sequence 1, 2, 3 three times in a row.
rep(1:3, times = 3)

Repeat "trt1" once, "trt2" twice, and "trt3" three times.
rep(c("trt1", "trt2", "trt3"), times =
1:3)

Repeat each element of the sequence 1, 2, 3 four times
rep(1:3, each = 4)

To access the last output in R, type
.Last.value # last output

Anything on a line after a # character is comment (R will
ignore the comment).

A Quick Course in R, Dan Yorgov 10 of 73

To store a data structure in the computer’s memory we
must assign it to an object (name). Names are case sensitive.
Data structures can be stored using the assignment
operator "<-" or ("=")
oE.g., store the sequence from 1 through 5 in an object

named v1.
v1 <- 1:5

To access the data stored in an object, we simply type the
variable name into R and hit enter.

v1
Vectors can be combined and stored in a single vector using
the c function and the assignment operator.

v2 <- c(1, 10, 11)
new <- c(v1, v2; new

A Quick Course in R, Dan Yorgov 11 of 73

A matrix can be created with the matrix() function. For
example:

A<-matrix(data=1:6, nrow=3,ncol=2); A
B<-matrix(data=1:6, nrow=5, ncol=10,
byrow=T); B

Notice that for B above the matrix function automatically
repeats the “data” 1,2,3,4,5,6 as needed in order to fill-in
all the entries. In recent versions of R it will give a warning
about this.

A Quick Course in R, Dan Yorgov 12 of 73

dim(B) #gives both dimensions of the
matrix B

For all ways to create a matrix, type ?matrix.

R will automatically perform an operation to all entries of a
matrix, a vector, a data frame variable, or even a data frame:

(1:4)^2 # will return 1,4,9,16
log(B) # will take natural log on each
entry of the matrix B

A Quick Course in R, Dan Yorgov 13 of 73

Categorical data should be stored as a factor in R. The factor
function takes vectors of any data type and converts them to
factors.

Examples:

f1 <- factor(rep(1:6, times = 3))
f1
f2 <- factor(c("a", 7, "blue", "blue"))
f2
is.factor(f2)

Many model fitting R functions will automatically handle
categorical variables when properly coded as a factor.

A Quick Course in R, Dan Yorgov 14 of 73

4 Helpful Functions

General Functions
str(x) # compact overview of object x
length(x)# length of x
sum(x) # sum elements in x
mean(x) # mean of elements in x
var(x) # sample variance of elements in x
sd(x) # standard deviation of elements in x
range(x) # range of elements in x
log(x) # ln of elements in x
summary(x)# 5-number summary of x

A Quick Course in R, Dan Yorgov 15 of 73

Functions related to statistical distributions

Suppose that a random variable X has the "dist" distribution
p[dist](q, …) – returns the cdf of X evaluated at q, i.e.,

= Pr ().
q[dist](p, …) – returns the inverse cdf (or quantile
function) of X evaluated at p, i.e., = inf { : Pr() }.
d[dist](x, …) – returns the mass or density of X
evaluated at x (depending on whether it’s discrete or
continuous).
r[dist](n, …) – returns an i.i.d. random sample of size n
having the same distribution as X.
… indicates that additional arguments describing the shape of
the distribution (but default values are assumed).

A Quick Course in R, Dan Yorgov 16 of 73

Examples:

pnorm(1.96, mean = 0, sd = 1)
returns the probability that a normal random variable with
mean 0 and standard deviation 1 is less than or equal to
1.96. That is, for Z~N(0,1), the function returns P(Z 1.96).

Note that mean=0, sd=1 are the default values so you can
skip them, pnorm(1.96)will give the same result.

If you want upper tail, P(Z> 1.96), we can get it with
pnorm(1.96, lower.tail=FALSE)
or
1-pnorm(1.96)

A Quick Course in R, Dan Yorgov 17 of 73

qunif(0.6, min =0, max = 1)

returns the value x such that () = 0.6 for a uniform
random variable on the interval [0, 1].

Here min =0, max = 1 are defaults bounds for the
uniform so same result if you type qunif(0.6).

dbinom(2, size = 20, prob = .2)

returns the probability that Pr (= 2) for
Binomial(= 20, = 0.2) random variable

A Quick Course in R, Dan Yorgov 18 of 73

dexp(1, rate = 4) returns the density of an
exponential random variable with mean = ¼ evaluated at 1

rchisq(100, df = 5) returns a random sample of 100
observations from a chi-squared random variable with 5 df.

For list of all distributions built in R check:

https://cran.r-project.org/web/views/Distributions.html

A Quick Course in R, Dan Yorgov 19 of 73

5 Basic Plotting

Good graphics are essential in data analysis.

They help us avoid mistakes.

They help us decide on a model.

They help communicate the results of our analysis.

Graphics can be more convincing than text many times.

A picture is worth a thousand words.

A Quick Course in R, Dan Yorgov 20 of 73

The plotting capabilities of R are one of its most powerful
and attractive features.
It is relatively simple to construct histograms, (parallel)
boxplots, scatterplots, etc.
A histogram is created using the hist function.
A boxplot is created using the boxplot function.
A scatterplot is created using the plot function.

Many R packages exist for "fancier" graphics. For instance,
ggplot2 package is often recommended.

A Quick Course in R, Dan Yorgov 21 of 73

Histograms

Histogram with a custom x-axis label and title

x <- rnorm(100, mean = 100, sd = 10)
hist(x, xlab = "x-values",

main = "Histogram of 100 observations from
Normal(100, 10^2)distribution")

A Quick Course in R, Dan Yorgov 22 of 73

Boxplots

Single Boxplot

y <- rnorm(100, mean = 80, sd = 3)
boxplot(y)

Parallel Boxplot

grp <- factor(rep(c("Grp 1", "Grp 2"), each
= 100)) #make groups for x and y
dat <- c(x, y)
boxplot(dat ~ grp, xlab = "Group")

A Quick Course in R, Dan Yorgov 23 of 73

Scatterplots

Construct a scatterplot with x on the x-axis and y on the y-axis:
#generate vectors
x <- runif(20)
y <- 2 + 3 * x + rnorm(20)
plot(x, y)

Scatterplot with custom labels and title and a line for the
deterministic part of the relationship:

plot(x, y, xlab="1st variable", ylab="2nd
variable", main="Title of the plot")
abline(2,3,col="blue")

A Quick Course in R, Dan Yorgov 24 of 73

Line plot of standard normal density

x <- seq(-4, 4, len = 1000)
y <- dnorm(x, mean = 0, sd = 1)
plot(x, y, xlab="x", ylab="density", type =
"l")
title("Density of Standard Normal") # same
as adding a main="Density of Standard
Normal" in the plot function call

A Quick Course in R, Dan Yorgov 25 of 73

"Histogram" scatterplot of probability mass function

#plot of Binomial(n = 20, p = .3) pmf
x <- 0:20
y <- dbinom(x, size = 20, prob = .3)
plot(x, y, xlab="# Successes", ylab="Prob",
type = "h")
title("pmf of Binomial(n = 20, p = .3)")

A Quick Course in R, Dan Yorgov 26 of 73

6 Data Frames

Date frames are created by passing vectors into the
data.frame function.
oThe names of the columns in the data frame are the

names of the vectors you give the data.frame
function.

Example:
d <- c(1, 2, 3, 4)
e <- c("red", "white", "blue", NA)
f <- c(TRUE, TRUE, TRUE, FALSE)
mydataframe <- data.frame(d,e,f)
mydataframe

A Quick Course in R, Dan Yorgov 27 of 73

The columns of a data frame can be renamed using the
names function on the data frame.

names(df) <- c("ID", "Color", "Passed")
df

The columns of a data frame can also be named when you
are first creating the data frame by using "name =" for each
vector of data.

df2 <- data.frame(ID=d, Color=e,
Passed=f); df2

A Quick Course in R, Dan Yorgov 28 of 73

The vectors in a data frame may be accessed using "$" and
specifying the name of the desired vector.
Access the Color vector in df:

df$Color
The vectors of a data frame may also be accessed by
specifying the desired row(s) or column(s) in square
brackets.
Access first row of df

df[1,]
Access third column of df

df[,3]
Access the ID column of df2 and assign it to newID

newID <- daf2$ID

A Quick Course in R, Dan Yorgov 29 of 73

7 Importing Data

The read.table function imports data into R as a data
frame.
Usage: read.table(file, header = TRUE, sep =
",")
file is the filepath and name of the file you want to import
into R
To change the directory use setwd, e.g., in Windows
setwd("PFW Teaching//QuickRCourse")
getwd() # prints the current directory
If you don’t know the file path, type
file = file.choose(). This will bring up a dialog box
asking you to locate the file you want to import.

A Quick Course in R, Dan Yorgov 30 of 73

header specifies whether the data file has a header (labels
for each column of data in the first row of the data file).

o If you don't specify this option in R or use
header=FALSE, then R will assume the file doesn't
have any headings.

oheader=TRUE tells R to read in the data as a data
frame with column names taken from the first row of
the data file.

A Quick Course in R, Dan Yorgov 31 of 73

sep specifies the delimiter separating elements in the file.
o If each column of data in the file is separated by a space,

then use sep = " "
o If each column of data in the file is separated by a

comma, then use sep = ","
o If each column of data in the file is separated by a tab,

then use sep = "\t".

In a toy example, we will read 4 rows of data with header
and tab separators.

data <- read.table("example.txt",
header = TRUE, sep = "\t")

str(data) # 3 numeric variables
mean(data$Third) #mean of the variable Third

A Quick Course in R, Dan Yorgov 32 of 73

8 Accessing Elements of a Data Structure

Subsets of the elements of a vector may be selected by
appending to the name of the vector an index vector in
square brackets.

a <- seq(2, 16, by = 2); a
Access the 2nd, 4th, and 6th elements of a.

a[c(2, 4, 6)]
Access all elements in a EXCEPT the 2nd, 4th, and 6th.

a[-c(2, 4, 6)]
Access all elements in a except elements 3 through 6.

a[-(3:6)]
The following will produce an error (indices start from 1)

a[-3:6]

A Quick Course in R, Dan Yorgov 33 of 73

B <- matrix(data=1:12, nrow=3, ncol=4,
byrow=T); B

To access the last entry in the last row of the matrix:
B[3,4]

To grab the second row only.
B[2,]

What is the median of the forth column?
median(B[,4])

A Quick Course in R, Dan Yorgov 34 of 73

Sometimes we need to know if the elements of an object
satisfy certain conditions. This can be determined using
the logical operators <, <=, >, >=, ==, !=

"==" means "equal to" and "!=" means not equal to.

values of a greater than 10
a > 10

values of a less than or equal to 4
a <= 4

values of v a equal to 10
a == 10

values of a not equal to 10
a != 10

A Quick Course in R, Dan Yorgov 35 of 73

More complicated logical arguments can be made using &
and |.
o& means "and"
o | means "or"

Elements of a greater than 6 and less than or equal to 10
(a > 6)&(a <= 10)

Elements of a less than or equal to 4 or greater than or
equal to 12.
o(a <= 4)|(a >= 12)

A Quick Course in R, Dan Yorgov 36 of 73

Logical statements can be used to return parts of an object
satisfying the appropriate criteria.
Return elements of a less than 6.

a[a < 6]
Return elements of a equal to 10.

a[a == 10]
Return elements of a less than 6 or equal to 10.

a[(a < 6)|(a == 10)]

A Quick Course in R, Dan Yorgov 37 of 73

9 Functions

A function is essentially a sequence of commands executed
based on certain arguments supplied to the function.

In R, a function is defined using the general format:

myfunction <- function(arg1, arg2, arg3)
{

code to execute
}

The name of the function is "myfunction", and to use this
function, we need to supply 3 arguments.

A Quick Course in R, Dan Yorgov 38 of 73

A function may or may not return something back that you
can store for later use.

To call the function, you simply type

myfunction(10, 3.17, "CU")

Default values might be provided by the function so arguments
can be omitted when making the function call.

myfunction <- function(arg1, arg2=3,
arg3="Purdue")…

A Quick Course in R, Dan Yorgov 39 of 73

Example of a function that returns the standard deviation of a
vector x

The sole argument is x, the vector of values for which we want
to determine the standard deviation

stdev <- function(x)
{

s <- sqrt(sum((x - mean(x))^2)/(length(x) - 1))
s

}

z <- rnorm(20) # 20 random values N(0,1)
z
stdev(z)
sd(z) # the sd() built-in R function gives
the same result

A Quick Course in R, Dan Yorgov 40 of 73

Example of a function that returns the density of a normal
random variable with mean mu and standard deviation sigma
for a vector x.

The arguments are:

x, the vector of values at which I want to determine the
density
mean, the mean of the normal distribution
sigma, the standard deviation of the normal distribution

normal.density <- function(x, mu = 0, sigma = 1)
{
return(exp(-(x-mu)^2/(2*sigma^2))/sqrt(2*pi*sigma^2))
}

A Quick Course in R, Dan Yorgov 41 of 73

Example: Create function that returns the mean and standard
deviation of a vector x.

The sole argument is:
x, the vector of values for which I want to determine the
mean and standard deviation

ms <- function(x)
{

m <- mean(x)
s <- sd(x)
return(list(m = m, s = s))

}
y <- 1:10
rslt <- ms(y); rslt
rslt$m-mean(y) #should give 0

A Quick Course in R, Dan Yorgov 42 of 73

10 Installing Packages

Many useful R functions come in packages, free libraries
written by R's community.

The CRAN online package repository features more than
12,000 available packages. More packages are available
outside of CRAN.

To install an R package, type:

install.packages ("package_name"), e.g.:
install.packages ("faraway")

Or use the menu Packages->Install package(s).

You need to install a package only once.

A Quick Course in R, Dan Yorgov 43 of 73

R will download the package from CRAN, so you must be
connected to the internet.

To access the functions and/or the data in the package in
your current R session:

library("package_name"), e.g.:

library(faraway)

To check the names of all functions and datasets in the package,
type:

ls("package:faraway")

A Quick Course in R, Dan Yorgov 44 of 73

Prominently used packages are well supported and
documented.

Some less prominently used packages might be slow and
less refined.

A good starting point to consider for R packages is
RStudio’s Quick list of useful R packages available:

https://support.rstudio.com/hc/en-us/articles/201057987-
Quick-list-of-useful-R-packages

A Quick Course in R, Dan Yorgov 45 of 73

11 Data and Plotting Example

It is critical to perform initial data analysis of real data.

Calculate numerical summaries:

means
standard deviations (SDs)
maximum and minimum, correlations
anything else that may be appropriate.

Construct the appropriate plots.

For one variable, consider boxplots, histograms, density
plots, etc.

A Quick Course in R, Dan Yorgov 46 of 73

For two variables, scatterplots.
For three or more variables, you can construct interactive
and dynamic graphics.

Look for outliers, data-entry errors, skewness, unusual
distributions, structure.

Make sure to clean the data of any errors.

This may be very time consuming.

A Quick Course in R, Dan Yorgov 47 of 73

Kidney Example

The National Institute of Diabetes and Digestive and Kidney
Diseases conducted a study on 768 adult female Pima Indians
living near Phoenix. The following variables were recorded:
number of times pregnant, plasma glucose concentration at 2
hours in an oral glucose tolerance test, diastolic blood pressure
(mmHg), triceps skin fold thickness (mm), 2-hour serum insulin
(mu U/ml), body mass index (weight in kg/(height in m2)),
diabetes pedigree function, age (years) and a test whether the
patient showed signs of diabetes (coded zero if negative, one if
positive). The data may be obtained from the UCI Machine
Learning Repository [http://archive.ics.uci.edu/ml].

Note that the dataset is also available in the R package faraway
by Julian Faraway.

A Quick Course in R, Dan Yorgov 48 of 73

In principle, we should find out the purpose of the study and
more about how the data were collected. But let’s get to
analysis.

>require(faraway) #load package faraway with
the dataset only if is not already loaded
>data(pima) # load data

>head(pima) # first six rows of pima
pregnant glucose diastolic triceps insulin

1 6 148 72 35 0
2 1 85 66 29 0
3 8 183 64 0 0
4 1 89 66 23 94
5 0 137 40 35 168
6 5 116 74 0 0

A Quick Course in R, Dan Yorgov 49 of 73

Numerical summaries of each variable:

> summary(pima)
pregnant glucose

Min. : 0.00 Min. : 0
1st Qu.: 1.00 1st Qu.: 99
Median : 3.00 Median :117
Mean : 3.85 Mean :121
3rd Qu.: 6.00 3rd Qu.:140
Max. :17.00 Max. :199

A Quick Course in R, Dan Yorgov 50 of 73

The summary command is a quick way to get the five-number
univariate summary information for each quantitative variable

> summary(pima)

Look for anything unusual or unexpected, perhaps
indicating a data-entry error.
The minimum diastolic blood pressure is zero!
(That’s often an indication of a problem).

> sort(pima$diastolic)
[1] 0 0 0 0 0 0 0 0 0 0
[11] 0 0 0 0 0 0 0 0 0 0
[21] 0 0 0 0 0 0 0 0 0 0
[31] 0 0 0 0 0 24 30 30 38 40

A Quick Course in R, Dan Yorgov 51 of 73

The first 35 values are zero—there’s a problem.

It seems that 0 was used in place of a missing value.
This is very bad since 0 is a number, this problem may be
overlooked, which can lead to faulty analysis!
This is why we must check our data carefully for potential
problems and things that don’t make sense.

A Quick Course in R, Dan Yorgov 52 of 73

The value for missing data in R is NA.

Several variables share this problem. Let’s set the 0s that
should be missing values to NA.

pima$diastolic[pima$diastolic == 0] <- NA
pima$glucose[pima$glucose == 0] <- NA
pima$triceps[pima$triceps == 0] <- NA
pima$insulin[pima$insulin == 0] <- NA
pima$bmi[pima$bmi == 0] <- NA

The variable test is a categorical variable, not numerical.

R thinks it is numerical.
In R, a categorical variable is a factor.

A Quick Course in R, Dan Yorgov 53 of 73

We need to convert this variable to a factor.

> pima$test <- factor(pima$test)
> summary(pima$test)
0 1

500 268

500 of the cases were negative and 268 were positive. We can
provide more descriptive labels using the levels function.

levels(pima$test) <-c("negative","positive")

Now the data is cleaned up.

A Quick Course in R, Dan Yorgov 54 of 73

Let’s create some plots.

A histogram of diastolic blood pressure.

> hist(pima$dias, xlab="Diastolic")

We had to use the $ symbol to access the dias variable in the
pima dataframe.

This isn’t a big deal for a few variables, but if we need to
access multiple variables in a dataframe, this can be
laborious.

An alternative way of doing this is to use the with function.
The first argument to the with function is the dataframe of
reference.

A Quick Course in R, Dan Yorgov 55 of 73

The second argument is the command you want to execute,
referencing the variables in the dataframe directly instead
of with the $ symbol.

> with(pima, hist(diastolic)) #alternative 1

Yet another way to do this is to use the attach() function,
selecting the dataframe for all the calls until you detach().

> attach(pima)
> hist(diastolic)
> detach(pima)

attach() is useful if you need to do play with the dataset but
one often forgets to detach and some names can overlap too.

A Quick Course in R, Dan Yorgov 56 of 73

A Quick Course in R, Dan Yorgov 57 of 73

The histogram is approximately bell-shaped and centered
around 70.

A histogram can look very different depending on certain
choices such as the number of bins and their spacing.

Many people prefer the density plot over the histogram since
the histogram is so sensitive to its options.

A density plot is essentially a smoothed version of a
histogram.
A "kernel" smoother is used to construct a weighted
average of data points and create a smooth surface.

> plot(density(pima$diastolic,na.rm=TRUE),
main="")

The density plot isn’t as blocky (though you might see weird
things happen at the boundaries).

A Quick Course in R, Dan Yorgov 58 of 73

A Quick Course in R, Dan Yorgov 59 of 73

We could simply plot the sorted data against its index.

> plot(sort(pima$diastolic),ylab="Sorted
Diastolic")

In this plot, we get to see

the individual values
the data distribution
possible outliers
the "discreteness" of the data.

A Quick Course in R, Dan Yorgov 60 of 73

A Quick Course in R, Dan Yorgov 61 of 73

We can create useful bivariate plots using the plot function.

The first plot is a standard scatterplot of diabetes vs diastolic
blood pressure.

The second is a parallel boxplot of diabetes vs test result.

> plot(diabetes ~ diastolic, data = pima)
this is the 4th way to specify pima data

> plot(diabetes ~ test, data = pima)

A Quick Course in R, Dan Yorgov 62 of 73

A Quick Course in R, Dan Yorgov 63 of 73

A Quick Course in R, Dan Yorgov 64 of 73

The plots we have just created are using the built-in base
graphics systems in R.

These are very fast, simple, and yet professional.

A fancier alternative is to construct plots using the ggplot2
package.

The plots look perhaps more elegant with a bit more effort.
First, we need to load the package:

if(!require("ggplot2")install.packages("ggplot2")
library(ggplot2)

A Quick Course in R, Dan Yorgov 65 of 73

The same plots can now be constructed using ggplot2.

ggpimax = ggplot(pima, aes(x=diastolic))

ggpimaxy = ggplot(pima, aes(x=diastolic, y=diabetes))

ggpimax + geom_histogram()

ggpimax + geom_density()

ggpimaxy + geom_point()

ggplot(pima,aes(x=diastolic,y=diabetes,shape=test)) +

geom_point() +

theme(legend.position = "top", legend.direction =
"horizontal")

ggpimaxy + geom_point(size=1) + facet_grid(~ test)

A Quick Course in R, Dan Yorgov 66 of 73

A Quick Course in R, Dan Yorgov 67 of 73

A Quick Course in R, Dan Yorgov 68 of 73

A Quick Course in R, Dan Yorgov 69 of 73

A Quick Course in R, Dan Yorgov 70 of 73

A Quick Course in R, Dan Yorgov 71 of 73

For ggplot2:

You first need to create a ggplot object using the ggplot
function that specifies where the data comes from (the data
frame is pima) and an aesthetic using aes.
The aesthetic specifies what you see such as position in the
x or y direction or aspects such as shape or color.
The second part of the command (after the +) in each case
is specifying the particular geometry for the plot (how you
want to map the aesthetics).
The advantage of ggplot2 is more apparent in producing
more complex plots involving more than just two variables.
A theme specifies options for the appearance of the plot.
oWe specified where the legend should appear in one

plot and to use more than one panel (facets) in another.

A Quick Course in R, Dan Yorgov 72 of 73

Other resources about R that may be helpful:
A rather thorough “Short Reference Card”:

https://cran.r-project.org/doc/contrib/Baggott-refcard-v2.pdf

Free “official” R notes from R-Project.org:

- R for Beginners, by E. Paradis
https://cran.r-project.org/doc/manuals/R-intro.pdf

- Notes on R: A Programming Environment for Data Analysis and
Graphics Version 3.4.3 (2017-11-30), by W. N. Venables, D. M.
Smith and the R Core Team
https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf

Thank you to Dr. Josh French from University of Colorado
Denver for sharing his Crash Course in R notes.

A Quick Course in R, Dan Yorgov 73 of 73

Affordable books:
The Art of R Programming, by Norman Matloff (Very good
reviews)
Linear Models with R, Second Edition, by Julian J. Faraway (a
lot of R code)
R Cookbook, by Paul Teetor

Many free and paid tutorials, courses, and videos are available
online (including on YouTube); for instance:

http://cyclismo.org/tutorial/R/
https://www.datacamp.com/courses/free-introduction-to-r

To practice some of the skills covered in this tutorial, please
download a short R practicum from:

https://tinyurl.com/R-Ttrl

