

STAT242 Introduction to Data Science with R, Fall 2024 161 of 270

o You can also organize your work in projects within

RStudio (an alternative way for project management).
 I often use text-only terminals when I work on
remote connections, so I don’t use the GUI that much
and I don’t personally use the project functionality.

Additionally, you can also execute R files/ scripts in a shell
mode (for instance on a remote terminal connection to utilize
cloud computing or on a supercomputer).

STAT242 Introduction to Data Science with R, Fall 2024 162 of 270

 Any variable that you create is stored in the local
environment in the local memory (local RAM).

 To see the variables that you defined:
ls() # lists all local variables

o Or you can see it all in the RStudio’s “Global
Environment” window (upper right corner by default).

 To delete a single object in the memory use
the rm()function.

 rm(y)# deletes the variable y

To delete all variables in the memory use
rm(list=ls()) # deletes all objects in the
#memory. Warning you CANNOT undo!

STAT242 Introduction to Data Science with R, Fall 2024 163 of 270

 Terms “Folders” and “directories” can be used
interchangeably although directory is an older term
originally referring to a physical location on some physical
storage device.
o Directories are containers of files that point to the

physical or logical location of each file.
 The idea originated during the development of the
original Unix (called Multics, Bell labs again) and
now it is propagated in most computer based
devices that we use.

 The directory structure is tree-like.

STAT242 Introduction to Data Science with R, Fall 2024 164 of 270

o Most directories have a parent directory and
possibly one or more child directories.

 Each time you start R it loads the.RData file from the
current or the default directory (or it creates the file
.RData if it is not already in the directory).

 When you end your session, you are asked if you want to
save the data currently available in the memory.

o This will overwrite the .RData file in the current
directory. There is no “undo”.

STAT242 Introduction to Data Science with R, Fall 2024 165 of 270

 You can also save the environment to .RData when you
want (in the current directory).

o Again, there is no “undo”. This will overwrite the file in
the current directory.

save.image() #save all variables in the
environment to .RData

 If you work in Linux bash or other shell, you can easily
manage projects by simply changing the directory (folder)
before you start your R session.

o This does not work (automatically) in a Graphical User
Interface (GUI) as R starts in the default directory.

STAT242 Introduction to Data Science with R, Fall 2024 166 of 270

 To see the directory that you are currently in R:
getwd() # prints the current directory

 To change the current directory (also called working
directory) to an already existing directory use setwd.

 In Windows:
setwd("C:/buff/Practicum")
o you might or might not need to provide the full path.

For the scripts in my projects I use relative paths,
e.g., "Vitiligo//GCTA" as opposed to the full path.

o A relative path starts from the current directory,
allowing you to easily move the branch to new locations
if needed.

STAT242 Introduction to Data Science with R, Fall 2024 167 of 270

 In RStudio you could also hit
< Ctrl + Shift + h> or < Cmnd + Shift + h> to see or set the
working directory.

 Note that R still did load the .RData file with the
environment when it started from the directory it started
(the default directory when using GUI).

o You can still manage projects by directories with the
GUI.

 A simple way to do so is to keep a clean (empty)
.RData file in the default folder and load() the
.RData after changing the directory to the working
directory you desire.

setwd("C:/buff/Practicum"); load(".RData")

STAT242 Introduction to Data Science with R, Fall 2024 168 of 270

14. Importing Data (for the first time)

 The read.table function imports so called “flat files” into
R as a data frame.

 Usage: read.table(file, header = TRUE, sep =
",")

 file is the filepath and name of the file you want to import
into R

 If you don’t know the full file path, use the dialog box in
Rstudio or, in the function, type
file = file.choose(). This will bring up a dialog box
asking you to locate the file you want to import.

STAT242 Introduction to Data Science with R, Fall 2024 169 of 270

 header specifies whether the data file has a header (labels
for each column of data in the first row of the data file).

o If you don't specify this option in R or use
header=FALSE or header=F, then R will assume
the file doesn't have any headings.

o header=TRUE or header=T tells R to read in the
data as a data frame with column names taken from the
first row of the data file.

STAT242 Introduction to Data Science with R, Fall 2024 170 of 270

 sep specifies the delimiter separating elements in the file.
o If each column of data in the file is separated by a space,

then use sep = " "
o If each column of data in the file is separated by a

comma, then use sep = ","
o If each column of data in the file is separated by a tab,

then use sep = "\t".

Note that more information is available in the help file for
read.table(), including usage examples.

 In a toy example, we will read 4 rows of data with header
and tab separators.

STAT242 Introduction to Data Science with R, Fall 2024 171 of 270

 The file example.txt is available for download online,
https://users.pfw.edu/yorgovd/IntroR/

o save in your current R working directory.
o if you are unsure what is it, use the getwd()function:

data <- read.table("example.txt",
 header = TRUE, sep = "\t")
data # the file is so small that you
don’t need to use the head command.
str(data) # 3 numeric variables
mean(data$Third) #mean of the variable Third

hint: you could read.table directly from a
web location too. Let’s try this...

STAT242 Introduction to Data Science with R, Fall 2024 172 of 270

15. For Loops and Brute Force

 For loops are a convenient way to cycle on a variable or
index.
o Note that for-loops are not the most efficient way to

program in R!
 If you have a large data set in a for loop, a copy is
saved internally. You pay for this in terms of time
and memory use.

 R supports vectorized looping functions from the
apply() family that avoid explicit use of loops.

 If you do production coding for a computa-
tionally demanding project, you should do
vectorizing.

STAT242 Introduction to Data Science with R, Fall 2024 173 of 270

o For most datasets, even those with several hundred
thousand observations, you could use a for-loop in R on
a contemporary computer.

 Just get the job done…
especially if you are a novice programmer!

 DataCamp: Intermediate R / Chapter 2. Loops was assigned
as part of a previous lab.
o Briefly, "for loop" in R scans through the elements in a

vector x (in their original order) and runs the same code
on each element of x.

o for loops provide an intuitive way to do more
complicated tasks that are not readily available in R
functions.

STAT242 Introduction to Data Science with R, Fall 2024 174 of 270

A for loop in R can be based on a vector of any type.

x<-1:10
for(i in x){
Do stuff with i: the current element of x
}

o Write a for loop that prints all strings in the input vector

x <- c("Dan", "Mary", "Maria", "Lisa", "Susan",
"Linda")

for(i in x){
Do stuff with i: the current element of x
}

STAT242 Introduction to Data Science with R, Fall 2024 175 of 270

 Let’s consider one example combining simulations, a for
loop, and an if statement.

A derangement is a permutation of an ordered set
(rearrangement of its elements) where not a single element
ends up in its original position.
(1,2,3,4,5) > (3,2,1,5,4) # is one possible derangement

What is the probability to have a derangement if
permuting (rearranging) a 7 elements ordered set?

 One could find the exact answer,
!

!

o You can code your own recursive functions (factorial
and !n , are not available in base R it seems).

o Or you can find a library with both.

STAT242 Introduction to Data Science with R, Fall 2024 176 of 270

 Here, as an exercise, we will do a quick simulation,
permuting the numbers from 1 to 7 and checking if each
permutation is a derangement or not.
o We will repeat many times counting the number of

“hits”.
o A for loop will give us the estimated (experimental)

probability.

INIT
set the number of elements
set the number of trials
set a counter for the # of derangements
in the for loop we will increase
this counter if a derangement is observed

STAT242 Introduction to Data Science with R, Fall 2024 177 of 270

Let’s build the inside of the for loop!
A counter inside of the loop will increase
if you have a derangement.

== will return TRUEs for same positions
TRUE is converted to 1 if you sum
so you count the number of elements
in the same position
if sum == 0 (no same locations),
we have a derangement and so
Increase the counter d

Outside of the loop, compute the
estimated, # experimental probability
total derangements over total # of trials

STAT242 Introduction to Data Science with R, Fall 2024 178 of 270

 This was an experimental probability, approximating ! 7/7!.
o If we want to obtain an answer closer to the exact,

probability, we can increase the number of trials.
o We can get arbitrarily close. That is, we can get as

close as we want to the theoretical value by increasing
the number of trials.

 Some questions are so hard that you can tackle them only
with a brute-force approach, traversing all possibilities.
o Exhaustive search is the “official name” for

brute-force…

STAT242 Introduction to Data Science with R, Fall 2024 179 of 270

16. Functions

 A function is essentially a sequence of commands executed
based on certain arguments supplied to the function.

In R, a function is defined using the general format:

myfunction <- function(arg1, arg2, arg3){
 code to execute
}

 The name of the function here is "myfunction", and to use
this function, we need to supply 3 arguments.

 The body of function is between curly brackets { }.

STAT242 Introduction to Data Science with R, Fall 2024 180 of 270

 To call the function, you type the name and provide the
arguments:

myfunction(10, 3.17, "PFW")

Default values for the input could be provided by the function
so the arguments can be omitted when making a function call.

myfunction <- function(arg1, arg2=3,
arg3="Purdue Fort Wayne")

 R is very flexible. For instance, a function may or may not
return something back that you can store for later use.
o Typically, it does :)

STAT242 Introduction to Data Science with R, Fall 2024 181 of 270

 Why you might want to write your own functions?

o You can recycle the same commands many times on
different inputs.

o You can produce cleaner to read code.

o Easier debugging (modular programming).

o Work on more complex projects that might be built into
a package.

STAT242 Introduction to Data Science with R, Fall 2024 182 of 270

Example of a function that returns the density of a normal
random variable with mean mu and standard deviation sigma
for a vector x. R function is dnorm().

The arguments are:

 x, the vector of values at which I want to determine the
density

 mean, the mean of the normal distribution
 sigma, the standard deviation of the normal distribution

normal.density <- function(x, mu = 0, sigma = 1)
{
return(exp(-(x-mu)^2/(2*sigma^2))/sqrt(2*pi*sigma^2))
}

let’s compare to the built-in density function

STAT242 Introduction to Data Science with R, Fall 2024 183 of 270

Example of a function stdev that returns the standard
deviation of a vector x. R function is sd().

The sole argument is x, the vector of values for which we want
to determine the standard deviation. Assume sample data, i.e.,
divide by (n-1).

stdev <- function(x)
{

s <- # compute in s
s # return s

}
z <- rnorm(20) # 20 random values N(0,1)
stdev(z)
sd(z) # the stdev() and sd() gives the same
result

STAT242 Introduction to Data Science with R, Fall 2024 184 of 270

Example: Create function that returns the mean and standard
deviation of a vector x.

The sole argument is:
 x, the vector of values for which we want to determine the
mean and standard deviation

ms <- function(x){
 m <- mean(x)
 s <- sd(x)
 return(list(m = m, s = s))
}
y <- 101:110
rslt <- ms(y)
rslt
rslt$m-mean(y) # should give 0

