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Abstract 

 
When the estimation of the single equation multiple linear regression model is looked upon as an 

optimization problem, we show how the principles and methods of optimization can assist the 

analyst in finding an attractive prediction model.  We illustrate this with the estimation of a 

linear prediction model for valuating residential property using regression quantiles.  We make 

use of the linear parametric programming formulation to obtain the family of regression quantile 

models associated with a data set.  We use the principle of dominance to reduce the number of 

models for consideration in the search for the most preferred property valuation model(s).   We 

also provide useful displays that assist the analyst and the decision maker in selecting the final 

model(s).  The approach is an interface between data analysis and operations research. 

 

Keywords:  Linear programming; parametric programming; real estate valuation; regression; 

regression quantiles. 
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1.   Introduction 

 
The objective of this paper is the presentation of a meaningful method for valuating single-

family residential property using a hedonic model that incorporates features of the property such 

as its age, square feet of living space, lot size, number of rooms, and others.  The underlying 

thesis of the hedonic model is that the valuation of the residence can be related to a ‘bundle’ of 

the property’s features (Kummerow, 2000).   This principle is used in valuating residential 

property for “purchase and sale, transfer, tax assessment, expropriation, inheritance or estate 

settlement, investment and financing ... by real estate agents, appraisers, mortgage lenders, 

brokers, property developers, investors and fund managers, lenders, market researchers and 

analysts, shopping center owners and operators, and other specialists and consultants” using 

multiple linear regression methods, Pagourtzi et al. (2003).  Although modeling residential 

property value in this manner is not the only technique, regression methods are commonly and 

routinely used in mass appraisal and other areas of real estate (Ferreira and Sirmans, 1988).  In 

fact, according to the literature, “Appraisers must supplement their skill set with valuation 

methods that can systematically analyze larger data sets with output that is readily applicable to 

single-property appraisal.  The importance of this cannot be overstated.  These systems use 

statistical models to derive real estate value, replacing flesh and blood appraisers.  They also use 

all available market data, most often in the form of a database of comparable sales,” (Kane et al., 

2004).  They continued:  “Appraisal valuation modeling techniques augment traditional appraisal 

practice.  The appraiser, therefore, is maintained as the valuation expert.”   This point is 

particularly important in that the method proposed in this paper positions the valuation expert 

centrally in selecting the final valuation model. 

 

In this paper, the single equation multiple linear regression model is used to valuate residential 

property using the method of quantile regression (QR) due to Koenker and Bassett (1978).  QR 

has very appealing aspects that translate well to valuating residential property.  It is very 

descriptive and offers a focus on the changes (regression residuals) in property valuations 

produced by the models.  The latter is particularly meaningful because it is the source of 

satisfaction and otherwise for parties directly impacted by the valuation such as property owners 

and taxing authorities.   We refer to this as the loss associated with changes in property 
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valuation.  Because QR produces many regression models, it provides the analyst and decision 

maker with alternate models to consider in controlling loss arising with model implementation.   

When residential property is valuated above a threshold percent that reflects the owner’s 

perception of its fair valuation, the owner may challenge the new valuation.  However, the owner 

may not do so if the new valuation is less than the current valuation. At the same time, property 

valuations are intended to produce revenue.  Therefore, it is desirable to find a valuation model 

that is fair to the tax authority and to property owners.  The tax authority should not lose tax 

revenues and properties should not be unduly over-valuated. We find that quantile regression is 

well suited to incorporating these implementation concerns.  We note that challenges to new 

property valuations are expensive to resolve. 

 

The intent of the paper is to illustrate the utility of valuating residential property using the 

hedonic linear regression model and parametric programming.  The focus is on the loss resulting 

from model implementation and not the statistical precision of the estimated regression 

coefficients or the performance of the hedonic model vis-a-vis other specifications of residential 

property valuation. The valuation techniques addressed in this paper are comparative methods 

that valuate property in the company of other properties that share a common feature such as 

location or a temporal aspect such as members of a set of properties scheduled for periodic re-

valuation.   

 

The rest of the paper is organized as follows.  In the next section, we review regression modeling 

of residential property valuation under various criteria including regression quantiles and provide 

an example.  In Section 3, we present a brief literature review of methods for valuating 

residential property and regression modeling of the same with emphasis on quantile regression.  

The mathematical parametric programming formulation of the quantile regression problem is 

given in Section 4 and discussion of model selection appears in Section 5.  We conclude the 

paper with remarks in Section 6.  
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2.   Regression modeling of residential property valuation 

 

For a single equation multiple linear regression model, let y denote the nx1 vector of observed 

values of the response variable corresponding to X, the nxk matrix of the values of k predictor 

(or regressor) variables that may include a column of ones to represent an intercept term.  Then 

 

     y  =  Xβ  +  ε           (1) 

 

where β is the kx1 vector of unknown parameters and ε is the nx1 vector of unobservable 

random disturbances in y.  In the application of (1) to valuating residential property,  y represents 

the current valuations of single-family residential properties; X, the physical characteristics or 

attributes of the properties; and n, the number of properties to be valuated. 

 

When the single equation linear regression model (1) is used for property valuation, the 

regression residual is the magnitude of the adjustment in the property’s valuation.  The negative 

residual indicates that the valuation obtained from the regression model is above the current 

valuation and increases the tax base and tax revenue derived from it.  The positive regression 

residual indicates the contrary.  When the property is valuated above (below) a threshold percent 

of perceived fair adjustment, the owner may (not) challenge the new valuation.  Hence the loss 

(change in tax base and the number of challenges to new property assessments) associated with 

implementing valuations derived from the regression model are related to the absolute and 

relative magnitudes of the regression residuals.  The net increase in property valuations is the 

sum of the absolute negative regression residuals minus the sum of positive residuals.   

 

Consider the real estate data (available at http://users.ipfw.edu/wellingj/) that consists of 54 

observations on y, the current valuations of the set of properties, and ten predictor variables x1, 

…, x10 that represent respectively taxes, number of baths, frontage (feet), lot size (square feet), 

living space (square feet), number of garages, number of rooms, number of bedrooms, age of 

home (years), and number of fireplaces, respectively.  Because y is zero when the values of 

variables x1,…,x10 are zero, the intercept term is omitted in modeling the data in the manner of 

(1).  
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2.1  Least squares, minimum sum of absolute errors, and multiple criteria regression models 

 

The least squares (LS) regression modeling of the data resulted in net increase in property 

valuations of -$8,545, i.e. if the model were used to valuate the properties, the tax base for the 

fifty-four properties would be $8,545 below current aggregate valuations, see Table 1.  Fitting 

the data to (1) under the minimum sum of absolute errors (MSAE) criterion produced net 

increase of $155,496.  The maximum relative increase in valuation is 45.89% for the LS model 

and 67.18% for the MSAE model.  For the LS results, the number of valuations that would 

increase by at least 10% and 20% is 16 and 7, respectively; for the MSAE model, the counts are 

14 and 6 respectively. 

 

Narula and Wellington (2007) proposed a multiple criteria methodology for valuating residential 

properties.  The results of maximizing the net increase in property valuations subject to five 

bounds  (≤ 60% , 50%, 40%, 32.5%, and 31.5%) of allowable relative change in any property 

valuation are reported in Table 1.  The net increase in property valuations for Models 1-3 

exceeds the values for the LS and MSAE models.   However, the number of property valuations 

above 10% and 20% of their current values for each of the five models is higher than the counts 

for the LS or the MSAE models.  

 

 

2.2  Quantile regression and parametric programming 

 

Koenker and Bassett (1978) formulated the regression quantile problem as a linear parametric 

programming problem and as such defined a family of regression models.  The formulation is a 

function of a single parameter that describes the fraction of the regression residuals with negative 

values.  The parameter is often denoted by θ and defined over the interval [0,1].  When applied to 

valuating residential property, the parameter describes the fraction of property valuations in the 

data set that are valuated above current values (y). The number of regression quantile models 

associated with a data set is of order n.   
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When the value of θ equals zero, all regression residuals are non-negative, i.e., all properties 

valuations derived from the θ = 0 regression quantile model are at or below current values.  On 

the other hand, when the value of θ equals one, all residuals are non-positive, i.e., all property 

valuations obtained from the θ = 1 regression quantile model are at or above current values.   

Clearly, the regression quantile models for θ near zero are not desirable because the resulting tax 

base would be smaller and the tax authority would lose revenue; for θ near one, many of the 

resulting valuations may be above the property owners’ perceived thresholds of fair adjustment 

and in consequence generate many challenges by property owners. 

 

Figure 1 is the display of the empirical regression quantile function (net increase in property 

valuations versus θ) for the real estate data.   In Table A.1 of the Appendix for each regression 

quantile model, we noted the associated: i) maximum percentage increase in valuation; ii) net 

increase in valuations, i.e., the sum of the increases in property valuations minus the sum of the 

reductions produced by the model; iii) the number of valuations increased ten percent or more 

above current values; and iv) those increased twenty percent or more.  Changes (regression 

residuals) in the property valuations for the few select regression quantile models addressed in 

this paper are displayed in Figure 2 and Figure 3.   Note that the dispersion of the regression 

residuals shifts to the left as θ increases in both figures.  

 

From inspection of Table A.1, under regression quantile modeling of the data, more than 48% of 

the property valuations have to be raised before an appealing set of new valuations emerges.  The 

net increase in property valuations is positive for models with θ ≥ 0.4818.  Correspondingly, the 

number of potential complaints due to property valuations raised 10% or more steadily increases.  

At this point, tradeoffs between the two loss measures become worthy of examination and the 

parameter θ serves as a meaningful reference point for the possibilities.  In Section 5, we discuss 

how to identify among the set of all regression quantile models those with attractive tradeoffs 

based on dominance and other considerations in the search for the final valuation model.   
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3.   Literature review 

 

Because the valuation of residential property may be framed as an optimization problem, a 

variety of modeling methods, principles (criteria), and post-optimization analyses of operations 

research can assist in solving the problem and analyzing the results.  This is the approach taken 

in the paper.   In addition to operations research, contributions to residential property valuation 

are found in the literature of econometrics, real estate finance and appraisal, statistics, and others.  

In this section, contributions that relate to the valuation problem as framed above are organized 

according to the taxonomy of Pagourtzi et al. (2003).  It consists of two major categories: 1) 

traditional methods and 2) advanced methods.  Most contributions of operations research appear 

in the latter. 

 

 

3.1  Traditonal Valuation Methods 

 

The Appraisal Institute publishes two popular volumes that treat residential property valuation, 

(Linne et al., 2000; Kane et al., 2004).   Wang et al. (2002) provided a collection of essays that 

address valuation theory, methods, and the literature of the time.  

 

Pagourtzi et al. (2003) included multiple regression and stepwise regression in the traditional 

valuation methods category of their taxonomy.    

 

 

3.1.1 Least Squares, minimum sum of absolute errors, and multiple criteria regression models 

 

When the single equation linear regression model (1) is used to valuate residential property, the 

ordinary least squares methodology is often used to estimate the parameters of the model, 

(Ihlanfeldt and Martinez-Vazquez, 1986). Several considerations account for the popularity of 

least squares in this context.  Among others, the statistical properties of the results are well 

known and software is conveniently available for obtaining the least squares results.  If the 

elements of ε in (1) are uncorrelated with expected value zero and common variance σ2, the least 
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squares estimator of β is best linear unbiased estimator.   When the elements of ε follow the 

normal distribution, the least squares estimator of β is the maximum likelihood estimator.   

 

For many practical problems, the nature of the disturbance distribution ε in (1) is rarely, if ever, 

known completely; the errors may not arise from a single distribution; outliers may occur but 

may be difficult to detect; and the choice of a loss function may not be clear from statistical, 

practical, or other considerations.  Because properties differ in their physical characteristics and 

the market values of comparable single-family residences have wide variability, the disturbances 

in y may not arise from a single distribution.  Furthermore, the consequence (loss) of 

implementing the property valuations derived from the model are not proportional to the squared 

error of prediction implicit in the least squares methodology.  As noted in Section 2, when 

assessed property value is used to determine property taxes, the gain or loss in tax revenues due 

to changes in property valuations are directly proportional to the sign and the magnitude of the 

adjustments.   

 

Alternatives to the least squares regression model have been proposed for modeling property 

values (Coleman and Larsen, 1991; Caples et al., 1997).  If the elements of ε in (1) follow the 

Laplace distribution, the minimum sum of absolute errors (MSAE) estimator of β is the 

maximum likelihood estimator.  Narula and Wellington (2007) proposed multiple estimation 

criteria for modeling residential property values.   

 

 

3.1.2  Quantile regression 

 

Unlike the least squares based regression methods, quantile regression provides a family of 

models that are a function of a very descriptive parameter that relates to the inherent loss 

associated with valuations derived from the single equation linear model (1).  For this reason, it 

is very attractive in valuating residential property.  

 

Koenker (2005) provided a comprehensive review of quantile regression that included statistical 

inference, computational methods, and other topics. Koenker and Hallock (2001) presented a 
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compelling case for quantile regression and cited applications.  Narula and Wellington (1991) 

framed quantile regression as a bicriteria optimization problem. 

 

The following properties and uses of regression quantile modeling are reported in the literature: 

 

• Unlike a unique fit provided by least squares or MSAE regression, the regression models 

corresponding to different values of θ provide alternate models for consideration and serve as 

good descriptive statistics of multifactor data (Hogg, 1975; Bassett and Koenker, 1982).  

• They may be used to detect heterogeneity of the error variance (Koenker and Bassett, 1982). 

• They may provide a useful way to detect outliers in a data set (Portnoy, 1982). 

• They allow assignment of different weights to the positive and negative errors, which are 

desirable if the loss associated with over- and under-valuation is different (Reeves and 

Lawrence, 1982). 

• Regression quantile estimators may mimic any L-estimator of location such as the median, 

Gastwirth’s estimator, or Tukey’s trimean estimator. 

• Regression quantile estimators have comparable efficiency to the least squares estimators for 

Gaussian models while substantially outperforming the least squares estimators over a wide 

class of non-Gaussian error distributions.  In particular, the MSAE (θ=1/2) estimator has a 

strictly smaller confidence ellipsoid than the least squares estimator for any disturbance 

distribution for which the sample median is a more efficient estimator of location than the 

sample mean (Koenker and Bassett, 1978). 

• Regression quantiles provide a good starting solution for certain robust regression 

procedures.  It is possible that the performance of some iterative robust regression procedures 

can be improved or their computational effort reduced or both by using the MSAE (θ =1/2) 

estimate instead of the least squares estimate as the starting solution.   

• Trimmed least squares procedures that utilize regression quantiles are discussed in Koenker 

and Bassett (1978) and Ruppert and Carroll (1980). 
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3.1.3.  Other regression methods 

 

In addition to the above, the following regression methods are reported in the literature of 

residential property valuation: rank regression (Cronan et al., 1986); ridge regression (Moore et 

al., 2003; Ferreira and Sirmans, 1988); robust regression methods (Janssen et al., 2001). Isakson 

(2001) discussed the pitfalls of using (1) in real estate appraisal.  

 

 

3.2   Advanced valuations methods 

 

This category includes methodologies familiar to operations researchers such as neural networks, 

hedonic models, spatial analysis, fuzzy logic, and time series methods.  Methodologies in the 

recent real estate valuation literature include: Bayesian approach (Atkinson and Crocker, 2006); 

goal programming (Aznar, 2007); data envelopment analysis (Lins et al., 2005); hierarchial 

linear model (Brown and Uyar, 2004); multiple criteria decision modeling (Fischer, 2009; 

Kaklauskas et al., 2007); neural networks (Peterson and Flanagan, 2009); spatial analysis and 

GIS (Chica-Olmo (2007); Pagourtzi et al., 2006).  We also note the use of analytic hierarchy 

process (AHP) in house selection modeling by Ball and Srinivasan (1994) and valuation of urban 

industrial land using analytic network process (ANP) by Aragones-Beltran et al (2008).  

 

 

4.   Problem formulation 

           

For the regression quantiles problem, let b denote the θth regression quantile estimate of β and e 

= y - ŷ denote the nx1 vector of corresponding regression residuals (changes in valuations) where  

ŷ  (=  Xb) is the vector of new property valuations.  Consider the check function 

 

ρθ (µ)   =    {θ µ  if  µ ≥  0,  (θ – 1) µ if µ <  0} 

 

for θ ∈ [0, 1].  For a given value of θ, the θth regression quantile is the solution of 
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     Minimize  ∑i ρθ (ei).       (2) 

 

where i=1,...,n.  When θ = 0, all residuals will be non-negative because positive residuals have 

zero weight in the minimization of (2).  On the other hand, when θ = 1, all residuals will be non-

positive since they have zero weight in (2). 

 

The θth regression quantile estimate b of β can be obtained by solving (2) iteratively.  However, 

Koenker and Bassett (1978) have shown that b may be obtained from the solution to the 

equivalent (primal) linear parametric programming problem 

 

Minimize        θ1΄e+  +  (1-θ) 1΄e-               (3) 

   Subject to            Xb  +  e+  -  e-   =  y      

                     e+, e-  ≥  0 

                  b unrestricted in sign 

 

where e
+ - e- = e and 1 is the nx1 unit vector. Note that the non-zero elements of e+ represent the 

magnitude of new valuations ŷ  (= Xb ) below current values y and the non-zero elements of e- 

indicate the contrary.  Because y - ŷ = e = e+ - e-, ei
+ ⋅ ei

- = 0, i = 1,...,n.  The dual linear 

programming (LP) problem for (3) may be written as: 

 

   Maximize     y΄f  +  (θ-1) y΄1                       (4) 

   Subject to          X΄f  =  (1-θ) X΄ 1 

       0  ≤  f  ≤  1. 

 

For θ = ½, the preceding formulations result in the MSAE regression model.   

 

For any value of θ in [0,1], the solution to (3) retains essential features of the MSAE regression 

problem.  Among those, the fitted regression quantile model passes through at least as many data 

points as k, the number of unknown parameters in the model (Narula and Wellington, 1986). 

Consequently, the number of valuations with zero adjustment (ei = 0) is at least k.  
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From the complementary slackness property of the primal/dual relationship, fi = 0 when ei < 0;  

0 < fi < 1 when ei = 0; and fi =1 when ei > 0, i = 1,...,n.  As θ of (3) approaches 1, the number of fi 

= 0 in (4) increases.  Consequently, for	
   the	
   primal	
   problem	
   (3),	
   few	
   of	
   the	
   regression	
  

residuals	
  are	
  negative	
  near	
  θ	
  =	
  0	
  and	
  few	
  are	
  positive	
  near	
  θ	
  =	
  1.	
  	
  	
  For	
  the	
  dual	
  problem	
  (4)	
  

and	
  θ	
  near	
  zero,	
  few	
  responses	
  (y)	
  are	
  on	
  or	
  below	
  the	
  QR	
  hyperplane	
  and	
  for	
  θ	
  near	
  one	
  

most	
   responses	
   are	
   below	
   the	
   hyperplane.	
   	
   The	
   duality	
   of	
  model	
   estimation	
   is	
   clear	
   i.e,	
  

minimizing	
  residual	
  error	
  on	
  and	
  about	
  the	
  QR	
  hyperplane	
  is	
  equivalent	
  to	
  sectioning	
  the	
  X,	
  

y	
  space	
  so	
  that	
  as	
  many	
  responses	
  as	
  possible	
  lie	
  on/below	
  the	
  desired	
  QR	
  hyperplane.	
  	
  The	
  

duality	
   is	
  subtle	
  but	
  helpful	
   in	
  understanding	
  how	
  QR	
  modeling	
  and	
   its	
  parameterization	
  

under	
  θ	
  position	
  the	
  regression	
  hyperplane	
  as	
  a	
  quantile	
  estimate.	
  

 

When the intercept term is included in the model, the dual problem (4) includes the constraint 

 

∑i fi   =   (1- θ) n    (5) 

 

that is, the average reduced cost is (1- θ) and  

 

∑i fi   =  n+  +  ∑p fp      (6) 

 

     θ = [  (k - ∑p fp )  +  n-  ] / n   (7) 

 

where n+ is the number of positive residuals and the fp are the dual variables for which p = {i | 0 

< fi < 1, i =1, ...,n}.   

 

Interestingly,  

 

ŷ΄f   =  y΄f   +  e΄f .                                           (8) 

 

For a specified value of θ, the primal linear programming problem (3) can be solved efficiently 

using a slightly modified version of the Barrodale and Roberts (1973) algorithm for solving the 

MSAE regression problem.  Computer programs given in Wellington and Narula (1984) and 
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Koenker and D'Orey (1987) may be used to compute all regression quantiles associated with a 

data set.  Koenker (2006) provided an R language implementation called quantreg for various 

quantile regression methods.  SPSS version 17 and above as well as the STATA software 

packages include routines for quantile regression.  They do not provide a convenient option for 

suppressing the intercept term in the model. 

 

 

5.   Model selection and analysis  

 

The preferred θth regression quantile model(s) should produce changes in property valuations 

that cause few challenges by property owners and should offer some gain in aggregate property 

valuations.  For those regression quantile models, the net gain in the tax base, 1΄e- - 1΄e+, will be 

as large as possible with as few as possible potential challenges from property owners.  

Challenges are likely for valuations raised 10% or greater and more likely for those raised 20% 

or more.  In Table A.1 of the Appendix, we recorded the net increase in property valuations and 

the number of valuations increased at or above thresholds of 10% and 20% for each regression 

quantile model of the real estate data discussed in Section 2.  Among the entries, note for some 

regression quantile models the net increase in valuations is smaller or the number of valuations 

increased at or above thresholds of 10% and 20% are greater than other models, i.e., they are 

dominated.  The non-dominated regression quantiles are presented in Table 2 and provide a 

reduction in the number of candidates for the final model selection.     

 

The decision maker may have a goal to increase valuations among the fifty-four properties by at 

least $0.25M, $0.50M, $0.75M, or $1.0M and in so doing provoke as few challenges to new 

property valuations as possible.  For these situations, QR models for θ = 0.5078, 0.6667, 0.7637, 

and 0.8471 respectively may have appeal, see Table 2.  Among these models, the consequences 

(net change in property valuations and number of potential challenges) of having more (or fewer) 

increased property valuations are readily determined from the inspection of adjacent regression 

quantile model(s).   For example, the θ = 0.6667 regression quantile model for the real estate data 
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             ŷ  =  58.247x1 + 8.804x2  -  0.099x3  + 2.354x4  - 13.853x5 - 7.932x6 +        (9) 

                       2.133x7 - 0.784x8 + 0.213x9  + 7.203x10  

  

will increase nearly 67% of the current property valuations.  For this model, the number of new 

valuations at or above thresholds of 10% and 20% is respectively 18 and 9.  For an additional 

valuation above 20%, the adjacent model for θ = 0.6846 offers an additional $76,247 in net 

property valuations. The fitted regression quantile model for θ = 0.6846 is 

 

             ŷ  =  57.342x1 + 7.787x2  -  0.182x3  + 2.944x4  - 18.915x5  -  5.819x6 +        (10) 

                      7.107x7 - 7.229x8 + 0.207x9  + 5.449x10. 

 

In another comparison, the model for θ = 0.7472 offers $105,638 increase in net property 

valuations with one additional valuation above 10% and one above 20% relative to the model for 

θ = 0.6667.  Comparisons such as these among the non-dominated QR models assist the decision 

maker in identifying an appealing final model. 

 

In finalizing the valuation model, it is important for the analyst to understand which residential 

properties form the basis for the valuations resulting from the final model.  In this regard, 

consider the following.  Each binding constraint of the optimal solution to (3) under any θ in [0, 

1] corresponds to a regression residual (ei
+ - ei

-) with value zero and accordingly an unchanged 

property valuation.  For each QR model, there are at least k (= number of elements of b) such 

constraints or residential properties.  As a consequence, the elements of b for each QR model are 

completely determined by the corresponding binding constraints, that is, 

 

b = X1
-1 y1            (11) 

 

where X1 is the kxk array containing the X-data of the binding constraints and y1 is the kx1 

vector of corresponding values in y.  Clearly, the binding constraints and the residential 

properties (observations) they relate to are most influential. They may be looked upon as a 

reference set. Challenges to valuations may be explained by the difference in features between 
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those of the reference set and the contested property. It is also useful to identify which properties 

are influential (binding) at the extremes and the center of the data.  

 

Figure 4 is a display of the instances in which each constraint is binding among the various 

regression quantile models of the real estate data set.  Let i(•) denote the number of regression 

quantile models in which constraint i is binding, i=1,...,54.  Constraint 46(85) is binding most 

often and constraints 7(1) and 29(1) are the least binding among the one hundred fifteen 

regression quantile models.  For models with θ ≥ 0.5, constraint 46 is binding.  Constraint 32 is 

binding for all models with 0.1316 ≤ θ ≤ 0.5047 and for 0.1942 ≤ θ ≤ 0.6667 it is binding with 

either constraints 30 or 31 or both.  Because observation 46 is among the k = 10 binding 

constraints that determine b1, …, b10  in eighty-five of the one hundred fifteen regression quantile 

models of the real estate data set, it may be an outlier, Portnoy (1982) and Bassett and Koenker 

(1982).  The same may be true for constraints 5(63), 30(61), and 32(67).   Due to the role these 

observations play in determining the vectors of parameter estimates, the analyst may want to 

confirm each datum of the observations. 

 

Observe in Figure 4 that the sets of binding constraints for any two adjacent quantile models 

differ by one element.  It is possible to generate all QR models for the real estate data beginning 

with the solution for an initial QR model (θ = 0 or 1) and selectively exchanging one element in 

its set of binding constraints with an element from its non-binding constraint set. Each exchange 

of this kind and the solution (QR model) it generates may be achieved with a simplex iteration.  

Successive exchanges produce all QR models. 

 

 
6.   Remarks 

  
Unlike the least squares regression methodology, quantile regression provides a family of models 

that are a function of a very descriptive parameter that relates to the inherent loss associated with 

residential property valuations derived from the single equation multiple linear regression model.  

In property valuation of this kind, we argued that loss/gain in tax base and increase/decrease in 

challenges of property owners arising from changes in valuations are proportional to the sign and 

magnitude (both absolute and relative) of the regression residual.   We found quantile regression 
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modeling to be well suited to addressing loss of this kind.  We showed how the set of all possible 

regression quantile models for a data set can be reduced to a smaller set of attractive models 

using the principle of dominance; how to examine tradeoffs among loss measures associated 

with appealing regression quantile models; how to analyze the LP solutions to the QR problem; 

and suggested displays such as Table 2 and Figures 1 - 4 to assist in final model selection.  We 

illustrated the approach with a data set.   

 

 The approach incorporates methodology of single and multiple criteria optimization in 

generating and analyzing meaningful alternate models for valuating residential property and as 

such is good illustration of the interfacing of operations research and data analysis. 

 

The approach may be adapted to the valuation of other assets such as robot technologies and the 

rating of vendors.  In each case, the valuation may be based on the asset’s characteristics (X) and 

its corresponding value (y).  The elements of y could be the asset cost or a measure of its 

effectiveness. The valuation derived from the regression approach can over-state or under-state 

an asset’s value and correspondingly enhance or lessen correctly or otherwise the appeal of the 

assets so valuated.  Suppose an analyst is confronted with evaluation of competing robot 

technologies with varying characteristics such as maximum load or lifting capacity, velocity, 

repeatability, acquisition cost as well as computer related features such as memory, processing 

speed, image display, and others, (Imang and Schlesinger, 1989; Rao and Padmanabhan, 2006; 

Chatterjee et al., 2010).  Let repeatability (y, precision with which a robot returns to a given 

point under a specified load and velocity) be prime concern and be related to the other technical 

features (X) in a hedonic linear regression model for a set of competing robots.  The positive 

(negative) regression residual indicates under- (over-) achievement of repeatability, i. e. loss.  

The former is poor performance and the latter is not possible.  Robots that are consistently fitted 

with zero residual error at or about the middle/central (e.g. 0.4 < θ < 0.6) regression quantiles 

standout in the modeling and may constitute a first subset of robots to be evaluated for pre-

purchase investigation and experimentation.  If the set of competing robot technologies is large 

(Rao and Padmanabhan, 2006), pre-purchase testing is expensive, and if the hedonic model is 

correct, QR modeling of the data provides means for identifying a meaningful reduction in the 

number technologies for evaluation.  
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Figure 4: Observations with zero residual error for all quantile regression models. 
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Figure 4: Observations with zero residual error for all quantile regression models.  (Continued.) 
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Figure 4: Observations with zero residual error for all quantile regression models.  (Continued.) 
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Table 1: The loss measures for the LS, MSAE, and multiple criteria regression models. 

 
 

 

Model  

 
Maximum 
Percentage 
Change in 
Valuations 

 
Net Gain in 
Valuations 

($000) 
  

 
No. of 

Valuations 
Increased 

10% or more 

 
No. of 

Valuations 
Increased 

20% or more 
LS 45.89 -8.545 16 7 

MSAE 67.18 155.496 14 6 
 

Multiple Criteria Models 
 

1 60 2579.395 39 32 

2 50 1776.410 35 26 

3 40 865.262 30 16 

4 32.5 54.455 17 10 

5 31.5 -61.362 17 10 
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Table 2:  The loss measures associated with the non-dominated regression quantile models.  
 

 θ 

Max % 
Change 
Among 

Valuations 

Net Gain In 
Valuations 

($000) 

No. of 
Valuations 

Raised 
More Than 
10% 20% 

1	
   0.9204	
   106.75	
   1722.671	
   38	
   29	
  
2	
   0.9170	
   102.66	
   1638.563	
   37	
   27	
  
3	
   0.8986	
   96.39	
   1510.047	
   34	
   25	
  
4	
   0.8929	
   93.86	
   1455.640	
   33	
   25	
  
5	
   0.8885	
   81.37	
   1243.673	
   33	
   23	
  
	
   	
   	
   	
   	
   	
  
6	
   0.8798	
   79.36	
   	
  	
  1218.182	
   32	
   23	
  
7	
   0.8674	
   74.42	
   	
  	
  1143.122	
   31	
   20	
  
9	
   0.8540	
   66.03	
   	
  	
  1077.259	
   31	
   19	
  
10	
   0.8471	
   67.26	
   	
  	
  1033.722	
   28	
   18	
  
11	
   0.8276	
   67.22	
   	
  	
  	
  	
  922.043	
   24	
   18	
  
	
   	
   	
   	
   	
   	
  

12	
   0.8203	
   69.74	
   	
  	
  	
  	
  872.428	
   23	
   17	
  
13	
   0.8007	
   70.38	
   	
  	
  	
  	
  832.800	
   23	
   16	
  
14	
   0.7929	
   70.54	
   	
  	
  	
  	
  784.260	
   21	
   14	
  
18	
   0.7637	
   71.02	
   	
  	
  	
  	
  764.018	
   22	
   12	
  
19	
   0.7549	
   69.83	
   	
  	
  	
  	
  719.159	
   21	
   11	
  
	
   	
   	
   	
   	
   	
  

23	
   0.7490	
   65.35	
   	
  	
  	
  	
  650.609	
   20	
   11	
  
25	
   0.7472	
   65.07	
   	
  	
  	
  	
  629.592	
   19	
   10	
  
30	
   0.6846	
   65.32	
   	
  	
  	
  	
  600.201	
   18	
   10	
  
36	
   0.6667	
   78.09	
   	
  	
  	
  	
  523.954	
   18	
   9	
  
37	
   0.6655	
   80.39	
   	
  	
  	
  	
  461.039	
   15	
   9	
  
	
   	
   	
   	
   	
   	
  

38	
   0.6650	
   68.86	
   	
  	
  	
  	
  439.130	
   15	
   8	
  
46	
   0.5262	
   64.81	
   	
  	
  	
  	
  379.277	
   14	
   8	
  
48	
   0.5200	
   63.65	
   	
  	
  	
  	
  343.581	
   13	
   9	
  
51	
   0.5078	
   63.85	
   	
  	
  	
  	
  334.786	
   12	
   9	
  
53	
   0.5044	
   67.84	
   	
  	
  	
  	
  207.551	
   13	
   6	
  
	
   	
   	
   	
   	
   	
  

57	
   0.4838	
   67.07	
   	
  38.541	
   11	
   4	
  
	
   	
   	
   	
   	
   	
  

        

             1 Obtained from Table A.1 of the Appendix. 
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