
152 Homework Assignment

Please show the details of your calculation. Just a result is not acceptable.

A very thin ring with a mass of 5.0 kg rolls down a slope of 30°. (Thing ring means you may assume the thickness of the wall and assume all the mass of the ring has a distance *r* away from the center.) The radius of the ring is 1.0 m.

- (a) Solution: Without friction, the ring does **not** roll. Instead, it slides as in the question of box sliding down a slope. Using energy-conservation, $mgsin(30^\circ)l = \frac{1}{2}mv^2$, one can easily get v=7.0 m/s. Since the ring is not rolling, $\omega = 0$. $a = gsin(30^\circ) = 4.9m/s^2$
- (b) Solution: With pure rolling, the Newton's 2^{nd} law for the center of mass is: $mgsin(30^\circ) f = ma$ The rotational motion is described as $T = I\alpha$. Plug in $T = f \times r$, $I = mr^2$, and $\alpha = \frac{a}{r}$. One can find $f = \frac{1}{2} mgsin(30^\circ) = 24.5N$ The velocity and angular velocity can be found from $mgsin(30^\circ)l = \frac{1}{2} mv^2 + \frac{1}{2} I\omega^2$, and $v = \omega r$ Therefore, v=4.95 m/s, and ω =4.95 s-1.
- (c) Solution: Similar to the previous step, we only need to replace the rotational inertia of the ring with the rotational inertia of a disc. Therefoer, the Newton's 2nd law for the center of mass is:

$$mgsin(30^{\circ}) - f = ma$$

The rotational motion is described as $T=I\alpha$. Plug in $T=f\times r$, $I=\frac{1}{2}mr^2$, and $\alpha=\frac{a}{r}$. One can find $f=\frac{1}{3}mgsin(30^\circ)=16.3N$

The velocity and angular velocity can be found from $mgsin(30^\circ)l = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$, and $v = \omega r$ Therefore, v=5.72 m/s, and ω =5.72 s⁻¹.