

Homework assignment 3 solution

When we discuss the length of rope and the strategy of pulling car out of mud, we would take action as shown below: (Top view)

You are basically trying to handle a question about the balance (sum) of forces.

This is the free-body diagram. (from the top view)

Starting from the freebody diagram we have following:

	x direction	y direction
Frope	- $4000\cos(\theta)$	$4000 \sin(\theta)$
F _{tree}	+ $F_{tree} \cos(\theta)$	$F_{tree} \sin(\theta)$
F_{pull}	0	-800 N

 $\sum F_x=0. \text{ e.g.} - F_{\text{rope}} \cos(\theta) + F_{\text{tree}} \cos(\theta)=0$, which gives you $F_{\text{rope}}=F_{\text{tree}}=4000$ N

 $\sum F_x=0. \text{ e.g.} + F_{\text{rope}} \sin(\theta) + F_{\text{tree}} \sin(\theta) - 800 \text{ N} = 0,$ You will find out the solution of $\theta=5.74^{\circ}$ Then, we can use trigonometry again to get the length of the rope to be $2 \times 5 \text{m} \times \tan(5.74^{\circ}) = 10.005 \text{meter}.$

(Note that the force 800N and 4000N doesn't directly "make" a triangle. Instead, the y component of the F_{rope} was only 400N, half of the 800 N.)