Solution for homework assignment 2

All drawings are omitted for briefness.

 (a) why set the origin of coordinates at the initial position just below the space ship. All the information can be listed as: For the ship:

For the ship.	
Х	у
$X_0 = 0$	
X _f =x	
V _{0x} =20 m/s	
$a_x=0$	

For arrow:

Х	у
X ₀ =300 m	y ₀ =300 m
X _f =x	y _f =100 m
V_{0x} = - V_0 cos60° m/s	$V_{0y} = V_0 \sin 60^\circ \text{ m/s}$
$a_x=0$	$a_x = -9.8 \text{ m/s}^2$

Therefore, we have three simultaneous equitions:

$$x = 20 \frac{m}{s} t$$

$$x = 300 - v_0 \cos 60^\circ \cdot t + \frac{1}{2} \cdot 0 \cdot t^2$$

$$100 = 0 + v_0 \sin 60^\circ \cdot t - \frac{1}{2} \cdot 9.8 \cdot t^2$$

Plug in the first one into the second one, solve for $v_{0,and}$ then plug into third equation, solve for t. The final results are: $V_0=52.9$ m/s

(b) using the equation of

$$v_f = v_i + a \cdot t$$

We have $v_{fx}=v_{0x}=26.5$ m/s and $v_{fy}=-17.5$ m/s.

Therefore, the arrow hits the spaceship from top at an angle of $\tan\theta = -17.5/26.5$, *e.g.33*° left-downward.