Maximal flat antichains of minimum weight

Martin Grüttmüller (HTWK Leipzig, Germany), Sven Hartmann (Technische Universität Clausthal, Germany), Thomas Kalinowski (University of Newcastle, Australia), Uwe Leck^{*} (University of Wisconsin – Superior), Ian Roberts (Charles Darwin University, Australia)

We study maximal families \mathcal{A} of subsets of $[n] = \{1, 2, ..., n\}$ such that \mathcal{A} contains only 2-sets and 3-sets and $\mathcal{A} \not\subseteq \mathcal{B}$ for all $\{\mathcal{A}, \mathcal{B}\} \subseteq \mathcal{A}$, i.e. \mathcal{A} is an antichain. For any n, all such families \mathcal{A} of minimum size are determined. This is equivalent to finding all graphs $\mathcal{G} = (V, \mathcal{E})$ with |V| = n and with the property that every edge is contained in some triangle and such that $|\mathcal{E}| - |T|$ is a maximum, where T denotes the set of triangles in \mathcal{G} . The largest possible value of $|\mathcal{E}| - |T|$ turns out to be $\lfloor (n+1)^2/8 \rfloor$. Furthermore, if all 2-sets and 3-sets have weights w_2 and w_3 , respectively, the problem of minimizing the total weight $w(\mathcal{A})$ of \mathcal{A} is considered. We show that $\min w(\mathcal{A}) = (2w_2 + w_3)n^2/8 + o(n^2)$ for $3/n \leq w_3/w_2 =: \lambda = \lambda(n) < 2$. For $\lambda \geq 2$ our problem is equivalent to the (6,3)-problem of Ruzsa and Szemerédi, and by a result of theirs it follows that $\min w(\mathcal{A}) = w_2 n^2/2 + o(n^2)$.

Keywords: Antichain, Sperner family, Flat Antichain Theorem, LYM inequality