Maximal flat antichains of minimum weight

Martin Grüttmüller (HTWK Leipzig, Germany), Sven Hartmann (Technische Universität Clausthal, Germany), Thomas Kalinowski (University of Newcastle, Australia), Uwe Leck* (University of Wisconsin - Superior), Ian Roberts (Charles Darwin University, Australia)
We study maximal families \mathcal{A} of subsets of $[n]=\{1,2, \ldots, n\}$ such that \mathcal{A} contains only 2 -sets and 3 -sets and $A \nsubseteq B$ for all $\{A, B\} \subseteq \mathcal{A}$, i.e. \mathcal{A} is an antichain. For any n, all such families \mathcal{A} of minimum size are determined. This is equivalent to finding all graphs $G=(V, E)$ with $|V|=n$ and with the property that every edge is contained in some triangle and such that $|E|-|T|$ is a maximum, where T denotes the set of triangles in G. The largest possible value of $|E|-|T|$ turns out to be $\left\lfloor(n+1)^{2} / 8\right\rfloor$. Furthermore, if all 2 -sets and 3 -sets have weights w_{2} and w_{3}, respectively, the problem of minimizing the total weight $w(\mathcal{A})$ of \mathcal{A} is considered. We show that $\min w(\mathcal{A})=\left(2 w_{2}+w_{3}\right) n^{2} / 8+o\left(n^{2}\right)$ for $3 / n \leq w_{3} / w_{2}=: \lambda=\lambda(n)<2$. For $\lambda \geq 2$ our problem is equivalent to the (6,3)-problem of Ruzsa and Szemerédi, and by a result of theirs it follows that $\min w(\mathcal{A})=w_{2} n^{2} / 2+o\left(n^{2}\right)$.

Keywords: Antichain, Sperner family, Flat Antichain Theorem, LYM inequality

