Characterization of Minimally $(2, l)$-Connected Graphs

Xiaofeng Gu
Math Department, West Virginia University
\{xgu@math.wvu.edu\}

Abstract

For an integer $l \geq 2$, the l-connectivity $\kappa_{l}(G)$ of a graph G is defined to be the minimum number of vertices of G whose removal produces a disconnected graph with at least l components or a graph with fewer than l vertices. Let $k \geq 1$, a graph G is called (k, l)-connected if $\kappa_{l}(G) \geq k$. A graph G is called minimally (k, l)-connected if $\kappa_{l}(G) \geq k$ but $\forall e \in E(G), \kappa_{l}(G-e) \leq k-1$. We present a structural characterization for minimally $(2, l)$-connected graphs and classify extremal results. These extend former results by Dirac and Plummer on minimally (2,2)-connected graphs.

