Spanning Connectivity of Line Graphs

Ye Chen, Zhi-Hong Chen, Hong-Jian Lai^{‡*}, Ping Li^{*}, Erling Wei[§]

February 28, 2011

Abstract

Spanning connectivity of graphs has been intensively investigated in the study of interconnection networks ([3]). For an integer s > 0 and for $u, v \in V(G)$ with $u \neq v$, an (s; u, v)-path-system of G is a subgraph H consisting of s internally disjoint (u, v)-paths. A graph is **spanning** s**connected** if for any $u, v \in V(G)$ with $u \neq v$, G has a spanning (s; u, v)-path-system. The **spanning connectivity** $\kappa^*(G)$ of a graph G is the largest integer s such that G has a spanning (k; u, v)-path-system, for any integer k with $1 \leq k \leq s$, and for any $u, v \in V(G)$ with $u \neq v$. An edge counter-part of $\kappa^*(G)$, defined as the superculerian width of a graph G, has been investigated in [2]. In [1], Catlin and Lai proved that if a graph G has 2 edge-disjoint spanning trees, and if L(G) is the line graph of G, then $\kappa^*(L(G)) \geq 2$ if and only if $\kappa(L(G)) \geq 3$. In this paper, we extend this result and prove that for any integer $k \geq 2$, if G has k edge-disjoint spanning trees, then $\kappa^*(L(G)) \geq k$ if and only if $\kappa(L(G)) \geq \max\{3, k\}$.

Key words: connectivity, spanning connectivity, hamiltonian line graph, hamiltonian-connected line graph, supereulerian graphs, collapsible graphs,

References

- P. A. Catlin and H.-J. Lai, Spanning trails joining two given edges, in "Graph Theory, Combinatorics, and Applications" (vol. 1), eds by Y. Alavi, G. Chartrand, O. Oellermann and A. Schwenk, Kalamazoo, (1991), 207-222.
- [2] Y. Chen, H.-J. Lai, H. Li and P. Li, Supereulerian graphs with width s and s-collapsible graphs, submitted.
- [3] L.-H. Hsu and C.-K. Lin, Graph Theory and Interconnection Networks, CRC Press, Boca Raton, London and New York, (2009).

^{*}Department of Mathematics, West Virginia University, Morgantown, WV 26506 †Butler University, Indianapolis, IN 46208

[‡]College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PRC

[§]Department of Mathematics, Renming University of China, Beijing 100872, P. R. China