The maximum size of a cut and graph homomorphisms

Ju Zhou
West Virginia University

Abstract

Let $k, l>0$ be integers. A k-cut l-cover of a graph H is a collection $\mathcal{F}=\left\{D_{1}, D_{2}, \cdots, D_{k}\right\}$ of edge cuts of H such that every edge of H lies in exactly l members of \mathcal{F}. For a graph $G, b(G)$ denotes the maximum size of an edge cut in G. We show that if G and H are graphs such that H has a k-cut l-cover, and that there is a graph homomorphism from G to H, then $b(G) \geq \frac{l}{k}|E(G)|$. When $p \geq 1$ and $H=C_{2 p+1}$, we have $b(G) \geq \frac{2 p}{2 p+1}|E(G)|$ and this bound is best possible. When H is a complete graph, a former result of Erdös in 1979 is implied and furthermore, we prove the bound in it is also best possible.

