Hamiltonian graphs involving neighborhood conditions

Yehong Shao Arts and Science, Ohio University Southern, Ironton, OH 45638

October 5, 2006

Abstract

Let G be a graph on n vertices, δ and α be the minimum degree and independence number of G, respectively. In this paper we prove that if G is a 2-connected graph and $|N(x) \cup N(y)| \ge n - \delta - 1$ for each pair of nonadjacent vertices x, y with $1 \le |N(x) \cap N(y)| \le \alpha - 1$, then G is hamiltonian or $G \in \{G_{\frac{n-1}{2}}^*, K_{\frac{n+1}{2}}, K_2^* \lor 3K_{\frac{n-2}{3}}\}$ where K_2^* and $G_{\frac{n-1}{2}}^*$ are subgraphs on 2 and $\frac{n-1}{2}$ vertices respectively. As a corollary, if G is a 2-connected graph and $|N(x) \cup N(y)| \ge n - \delta$ for each pair of nonadjacent vertices x, y with $1 \le |N(x) \cap N(y)| \le \alpha - 1$, then G is hamiltonian. It extends the following two theorems by Faudree et al and Yin, respectively.

If G is 2-connected graph and $|N(u) \cup N(v)| \ge n - \delta$ for each pair of nonadjacent vertices $u, v \in V(G)$, then G is hamiltonian.

If G is 2-connected graph and $|N(u) \cup N(v)| \ge n - \delta$ for each pair of nonadjacent vertices u, v with d(u, v) = 2, then G is hamiltonian.