Parity Edge-Coloring of Graphs

David P. Bunde Kevin Milans* Douglas B. West Hehui Wu

Abstract

A sequence of colors $a_{1}, a_{2}, \ldots, a_{2 n}$ is repetitive if $n>0$ and $a_{i}=$ a_{i+n} for all $1 \leq i \leq n$. A Thue coloring of a graph G colors the edges of G so that no path produces a repetitive color sequence, and the Thue number $t(G)$ of a graph G is the fewest number of colors needed for a Thue coloring. A 1906 theorem due to Thue shows that $t\left(P_{n}\right)=3$ for all $n \geq 5$, and Alon, Grytczuk, Hałuszczak, and Riordan present a simple Thue coloring of the clique to show that $t\left(K_{n}\right) \leq 2 n-3$. In fact, this edge-coloring enjoys stronger properties.

A sequence of colors is a parity sequence if each color appears an even number of times. A strong parity edge-coloring of a graph G colors the edges of G so that the only walks that produce parity color sequences start and end at the same vertex, and the strong parity edge chromatic number $\hat{p}(G)$ of a graph G is the fewest number of colors needed for a strong parity edge-coloring. The Thue coloring of K_{n} due to Alon et. al. is a strong parity edge-coloring.

We determine $\hat{p}\left(K_{n}\right)$ for all n and describe the strong parity edgecolorings of K_{n} which use the minimum possible number of colors. As a corollary, we obtain a special case of a theorem due to Yuzvinsky, and we offer a conjecture on the value of $\hat{p}\left(K_{n, n}\right)$ which would imply the full theorem.

