# List-coloring the Square of a Subcubic Graph 

Daniel Cranston Seog-Jin Kim


#### Abstract

The square $G^{2}$ of a graph $G$ is the graph with the same vertex set as $G$ and with two vertices adjacent if their distance in $G$ is at most 2 . Thomassen showed that for a planar graph $G$ with maximum degree $\Delta(G)=3$ we have $\chi\left(G^{2}\right) \leq 7$. Kostochka and Woodall conjectured that for every graph, the chromatic number of $G^{2}$ equals the listchromatic number of $G^{2}$, that is $\chi_{l}\left(G^{2}\right)=\chi\left(G^{2}\right)$ for all $G$. If true, this conjecture (together with Thomassen's result) implies that every planar graph $G$ with $\Delta(G)=3$ satisfies $\chi_{l}\left(G^{2}\right) \leq 7$. We prove that every planar graph with $\Delta(G)=3$ satisfies $\chi_{l}\left(G^{2}\right) \leq 8$. In addition, we show that if $G$ is a planar graph with $\Delta(G)=3$ and girth $g(G) \geq 7$, then $\chi_{l}\left(G^{2}\right) \leq 7$. Dvořák, Skrekovski, and Tancer showed that if $G$ is a planar graph with $\Delta(G)=3$ and girth $g(G) \geq 10$ then $\chi_{l}\left(G^{2}\right) \leq 6$. We improve the girth bound to show that: if $G$ is a planar graph with $\Delta(G)=3$ and $g(G) \geq 9$, then $\chi_{l}\left(G^{2}\right) \leq 6$.


