Packing Two Graphs with Bounded Sum of Edges and Maximum Degree

Derrek Yager, University of Illinois at Urbana-Champaign

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs of order n and $G_{3}=$ $\left(V_{1} \cup V_{2}, E_{3}\right)$ a bipartite graph. A bijection f from V_{1} onto V_{2} is a list packing of the triple $G=\left(G_{1}, G_{2}, G_{3}\right)$ if $u v \in E_{1}$ implies $f(u) f(v) \notin E_{2}$ and $v f(v) \notin E_{3}$ for all $v \in V_{1}$. Also, let $D_{i}:=\max _{v \in V_{i}} \max \left\{d_{i}(v), d_{3}(v)\right\}$ for $i=1,2$. We prove that if $\Delta_{1}, \Delta_{2} \leq n-2$ and $\Delta_{3} \leq n-1$, then there is an absolute constant C such that if $e_{1}+e_{2}+e_{3}+D_{1}+D_{2} \leq 3 n-C$, then G packs. In order to prove this, we also show that if $\Delta_{1} \Delta_{2}+\Delta_{3}<\frac{n}{2}$, then G packs, an extension of a result by Sauer and Spencer. Additionally, we extend a result of Bollobás and Eldridge, proving that if $\Delta_{1}, \Delta_{2} \leq n-2, \Delta\left(G_{3}\right) \leq n-1$, and $e_{1}+e_{2}+e_{3} \leq 2 n-3$, then G packs or is one of 8 possible exceptions.

