Hamilton cycles in 3-connected claw-free and net-free graphs

Keke Wang, West Virginia University

For an integer $s_1, s_2, s_3 > 0$, let N_{s_1,s_2,s_3} denote the graph obtained by identifying each vertex of a K_3 with an end vertex of three disjoint paths $P_{s_1+1}, P_{s_2+1}, P_{s_3+1}$ of length s_1, s_2 , and s_3 , respectively. We determine a family \mathcal{F} of graphs such that, every 3-connected $(K_{1,3}, N_{s_1,s_2,1})$ -free graph Γ with $s_1 + s_2 + 1 \leq 10$ is hamiltonian if and only if the closure of Γ is L(G)for some graph $G \notin \mathcal{F}$. We also obtain the following results.

- 1. Every 3-connected $(K_{1,3}, N_{s_1,s_2,s_3})$ -free graph with $s_1 + s_2 + s_3 \leq 9$ is hamiltonian.
- 2. If G is a 3-connected $(K_{1,3}, N_{s_1,s_2,0})$ -free graph with $s_1 + s_2 \leq 9$, then G is hamiltonian if and only if the closure of G is not the line graph of a member in \mathcal{F} .
- 3. Every 3-connected $(K_{1,3}, N_{s_1,s_2,0})$ -free graph with $s_1 + s_2 \leq 8$ is hamiltonian.

(This research supported by NSFC (No. 11061034).)