Choosability of graph powers

Benjamin Reiniger, University of Illinois at Urbana-Champaign

The Total List Coloring Conjecture asserts that every total graph is chromatic-choosable, i.e. its choosability is equal to its chromatic number. The Square List Coloring Conjecture is stronger, asserting that every square of a graph is chromatic-choosable; however, Kim and Park disproved the Square List Coloring Conjecture. Zhu asked whether the analogous statement for k th powers holds for any k. We prove that this is not the case. Using affine planes, we construct infinitely many graphs whose choosability exceeds their chromatic number by a logarithmic factor. On the other hand, we prove a polynomial upper bound for the choosability of k th powers $(k>1)$ in terms of chromatic number. Joint work with N. Kosar, S. Petrickova, and E. Yeager.

