Introduction to Loops - Solution
	
[bookmark: _GoBack]Complete a Program Development Worksheet (Setup, Coding & Validation) for each of the following:

1. Vectorized Leap Day Function: Submit the vectored Leap Day function from Section II.

Problem ID _Vectorized Leap Day	Programmer Solution	
Set Up/ Introduction				Type of Program: 	 Script	 Function
1. Problem Statement:
 Make a function that can take a vector years, determine if they are leap years or not and return a vector of 0s and 1s. With ones representing leap years and zeros not leap years. (updating previous function to handle vectors element-by-element).

Inputs: (full name, variable to be used, units)
	Name
	Description
	Units or Values
	Input Source*

	year
	A vector of years
	Years
	Command line

2. Output: (full name, variable to be used, units)
	Name
	Description
	Units or Values
	Output type*

	day
	A vector with ones for leap years
	0 or 1
	Command Line

3. Solution Steps (order of these two parts may be varied):
	year (input)
	
	day (output)

	2000
	Divisible by 400
	1

	1900
	Divisible by 100
but not by 400
	0

	2008
	Divisible by 4
but not 100
	1

	2009
	Not divisible by 4
	0

Perform calculation on test case(s)		 	Identify the steps/equations
A reasonable attempt at describing steps or doing a flowchart should be accepted for full credit

4. Programming
function day=LeapDayV(year)
% This function will take any calendar year (full digits) and return a 1 if
% it is a leap year and a 0 if it is not a leap year. The function follows
% the Gregorian Calendar rules. The function can handle both single years
% and vectors of years.
%
% function day=LeapDayV(year)
% Input: year = a Gregorian Calendar year (all digits)
% Output: day = 1 for leap years, 0 for non leap years

% preallocate the length of the output vector
day = zeros([1,length(year)]);

% for looop to step through each member of the loop
for n = 1:length(year)
 if mod(year(n), 400) == 0 % rule 1 leap year if divisible by 400
 day(n) = 1;
 elseif mod(year(n), 100) ==0 % rule 2 not leap if divisible by 100
 day(n) =0;
 elseif mod(year(n),4) ==0 % rule 3 leap if divisible by 4
 day(n) = 1;
 else
 day(n) =0;
 end
end

5. Validation

> day = LeapDayV([2000 1900 2008 2009])
day =
 1 0 1 0

Matches test case exactly

2. Vectorized Make-Even: Convert the Make Even function from two weeks ago to handle vectors (i.e. make it so a vector of values can be input and the program will return a vector of even numbers).
Problem ID _Vectorized Make Even Function 	Programmer _S. Moor ____

Set Up/ Planning				Type of Program: 	 Script		 Function
1. Problem Statement:
Develop a function that will have an output of an even integer. If an integer is even then it is simply output as is. If an odd integer is input the program will add one and return the resulting integer. 
2. Inputs: (full name, variable to be used, units)
	Variable Name
	Description
	Units or Values
	Input Source*

	x
	Input Value
	Must be Integer
	Command Line

3. Output: (full name, variable to be used, units)
	Variable Name
	Description
	Units or Values
	Output type*

	x
	Even output value
	Integer
	Command Line

4. Solution Steps (order of these two parts may be varied):
(1) Perform calculation on test case(s)	 (2) Identify the steps/equations to be used in codeA reasonable attempt at describing steps or doing a flowchart should be accepted for full credit.

	Input
	Output

	2
	2

	3
	4

	-4
	-4

	-3
	-2

5. Programming
function x = MakeEvenV(x)
% This function forces an integer input to be even by increasing any odd
% number by one. This function can handle vector input and make each
% element even.
% S. Scott Moor March 2020
%
% function x = MakeEvenV(x)
% input: x = any integer or integer vector
% output: x = an even integer or integer vector (same as input or one higher)

% loop steps through the vector one element at a time. Stores answer back
% in the elements position
for k = 1:length(x)
 % Conditional tests if the input is even and adds one if it is not
 if rem(x(k),2)~= 0
 x(k) = x(k) + 1;
 end
end

6. Validation
>> MakeEvenV([2 3 -4 -3])
ans =					Matches hand result in # 4 exactly
 2 4 -4 -2

3. Arbitrary Vector Write a program that takes an arbitrary vector of real numbers and returns a vector with negative numbers squared and positive numbers halved.

Problem ID _Arbitrary Vector	Programmer Solution	
Set Up/ Introduction				Type of Program: 	 Script	 Function
7. Problem Statement:
Develop a function that will take a vector of real numbers, square the negative numbers and divide the positive numbers by two. The program then returns a vector of the modified numbers.
8. Inputs: (full name, variable to be used, units)
	Name
	Description
	Units or Values
	Input Source*

	A
	Input vector
	Vector or real numbers
	Command line

9. Output: (full name, variable to be used, units)
	Name
	Description
	Units or Values
	Output type*

	r
	Output vector with corresponding results
	Vector of real numbers
	Command line

10. Solution Steps (order of these two parts may be varied):
Perform calculation on test case(s)		 	Identify the steps/equationsOr use a flowchart for steps

Test vector: 	a = [4, -3, -2, 12, 1]	
Expected result 	b= [2, 9, 4, 6, ½]

List of steps
1. Start with index = 1
2. Select element
3. Test if it is greater than zero
a. If true divide by two
b. If false square
4. Store result in equivalent place
in output vector.
5. If element number is < length of input
increment index and repeat steps 2 – 5
Or else if false end.

11. Programming:
function y = Arb(x)
% function y=Arb(x)
%
% For a positive number this function returns half of the number
% For a negative number it returns the square of the number.
% The function will handle vectors element-by-element
%
% S. Scott Moor October 2018
%
% Variables
% Input: x = an arbitrary vector of real numbers
% Output: y = the resulting transformation

% pre-allocation (optional)
y = zeros(size(x));

% for loop steps through the input vector & tests elements one-by-one
% Divides positive numbers by 2 and squares negative numbers.

for k = 1:length(x)
 if x(k) >=0
 y(k) = x(k)/2;
 else
 y(k) = x(k)^2;
 end
end

12. Validation
>> a = [4, -3, -2, 12, 1]
a =
 4 -3 -2 12 1
>> Arb(a)
ans =
 2.0000 9.0000 4.0000 6.0000 0.5000

Result matches test expectations from step 4.

Extra Credit: Fibonacci Series: Prepare a program that will return the terms of a Fibonacci Sequence given the first two values and the number of terms. In a Fibonacci Series each successive term is the sum of the two terms that come before it. For example the 6 term series with initial terms of 1 and 1 is:
				1, 1, 2, 3, 5, 8

[bookmark: _Hlk528241706]Problem ID _Fibonacci Series & the golden ratio	Programmer Solution	
Consulted with __Problem adapted from Holly Moore, MATLAB for Engineers, (2007)
Set Up/ Introduction				Type of Program: 	 Script	 Function
1. Problem Statement:
Develop a function that will return a Fibonacci Sequence given the first two numbers in the series and the total number of terms.
2. Inputs: (full name, variable to be used, units)
	Name
	Description
	Units or Values
	Input Source*

	n1
	First number in series
	Integer
	Command line

	n2
	Second number in series
	Integer
	Command line

	N
	Number of terms in series
	Integer
	Command line

3. Output: (full name, variable to be used, units)
	Name
	Description
	Units or Values
	Output type*

	FS
	Fibonacci Series
	integer series
	Command line

4. Solution Steps (order of these two parts may be varied):
Perform calculation on test case(s)		 	Identify the steps/equations
For n1 = 1, n2 = 2 and N = 6 1. Set first two numbers into the series
2. Calculate the next term in the series from the previous term.
3. Repeat step 2 until the number of terms = N
4. Plot resulting ratios in order

Or use a flowchart

The series would be:
FS = 1, 1, 2, 3, 5, 8, 13, 21

[bookmark: _Hlk528241760]5. Programming:
 function FS = Fib(n1, n2, N)
% function FS = FibR(n1, n2, N)
% This function will create a Fibonacci Series, Fibonacci
% Sequences are series where each element is the sum of the previous two
% elements.
% S. Scott Moor October 2018
%
% Input Variables: n1 = the first number in the series (integer)
% 	 n2 = the second number in the series (integer)
% 	 N = number of terms in the series (integer)
% Output Variable: FS = Resulting Fibonacci Series

% Other Variables k = loop index and current term in series

% Preallocate the Fibonacci Series (optional)
FS = zeros(1,N);

% Place the first two terms in the series
FS([1,2]) = [n1, n2];

% Each iteration of this loop creates the next term in the series for
% terms 3 through N
for k = 3:N
 FS(k) = FS(k-1)+FS(k-2);
end

6. Validation: Test Case Check:
>> FS = Fib(1,1,8)
FS =
 1 1 2 3 5 8 13 21
These results match the test calculation with in significant figures use.

