## CE 45000: Transport Policy and Planning Due Thursday, November 29, 2018

Problem 1: You estimated that total 1000 trips will be distributed between TAZ 12 and TAZ 15 among 5 different mode of transportation including carpool, taxi, bus, light rail, and solo driver. How will you distribute the trips. Use following information:

| MODE        | Mode<br>specific<br>constant | IVTT<br>(min) | OVTT<br>(min) | COST<br>(cent) |  |
|-------------|------------------------------|---------------|---------------|----------------|--|
| Solo driver | 0.00                         | 17            | 5             | 200.0          |  |
| Carpool     | -0.25                        | 21            | 5             | 100.0          |  |
| Taxi        | -0.40                        | 17            | 4             | 320.0          |  |
| Light rail  | -0.28                        | 25            | 8             | 120.0          |  |
| Bus         | -0.30                        | 33            | 7             | 160.0          |  |

Utility function:  $Ui = ai - 0.02 \cdot IVTTi - 0.04 \cdot OVTTi - 0.0026 \cdot COSTi$ 

Problem 2: Can you go node 1 to node 12 in 10 hours? Prove. Use Dijkstra's Algorithm.



Problem 3: A transit agency is evaluating alternatives for a light rail line construction. Five alternatives are evaluated for five different criteria (see following table). Evaluate the alternatives using ranking method.

| No | Criterion (MOE)                    | Ranking | Alt 1 | Alt 2 | Alt 3 | Alt 4 | Alt 5 |
|----|------------------------------------|---------|-------|-------|-------|-------|-------|
| 1  | Daily ridership (1000s)            | 2       | 25    | 23    | 20    | 18    | 17    |
| 2  | Annual return on investment (%)    | 1       | 13    | 14    | 11    | 13.5  | 15    |
| 3  | Length of line (mi)                | 3       | 8     | 7     | 6     | 5     | 5     |
| 4  | Passengers seated in peak hour (%) | 3       | 25    | 35    | 40    | 50    | 50    |
| 5  | Auto drivers diverted (1000s)      | 4       | 3.5   | 3     | 2     | 1.5   | 1.5   |