Problem 1: Using the data provided in the Tables 1, 2 and 3, estimate trip distribution?
Table 1: Trips Productions and Attractions of 5 Traffic Analysis Zones

TAZ	Productions	Attractions
1	234	1080
2	76	531
3	602	76
4	432	47
5	472	82

Table 2: Travel Time Matrix

TAZ	1	2	3	4	5
1	4	12	8	15	21
2	6	3	9	23	14
3	20	7	4	10	25
4	12	18	8	4	17
5	24	19	23	15	8

Table 3: Friction Factors at Different Travel Times

Travel time (min)	Friction Factor
3	87
4	45
7	29
10	18
15	10
20	6
25	4

Problem 2: The utility functions for auto and transit are as follows:

$$
\begin{aligned}
& \text { Auto: } U_{A}=-0.46-0.35 T_{1}-0.08 T_{2}-0.005 C \\
& \text { Auto: } U_{T}=-0.07-0.05 T_{1}-0.15 T_{2}-0.005 C
\end{aligned}
$$

Where, $T_{1}=$ Total Travel Time (minutes), $T_{2}=$ waiting time (minutes), $C=\operatorname{cost}$ (cents)
The travel characteristics between two zones are as follows:

	Auto	Transit
T_{1}	20	30
$\mathrm{~T}_{2}$	8	6
C	320	100

Suppose rising fuel prices lead to an increase of certain amount. How much would you increase so that the mode shares will not be affected.

Problem 3: Suppose, there are two routes to go to destination 2 from origin 1 (see following figure). One of them is freeway, and the other one is multilane highway. Estimate total system travel time when flows on freeway and multilane highway are 2200 and $2000 \mathrm{pc} / \mathrm{h} / \mathrm{ln}$ respectively.

Freeway, speed limit 70 mph

Multiline highway, speed limit 60 mph

$$
t=t_{0}\left\{1+0.83 *\left(\frac{x}{2300}\right)^{6}\right\}
$$

