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Chapter 6 – Memory

CS 271  Computer Architecture
Purdue University Fort Wayne
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Chapter 6 Objectives
 Master the concepts of hierarchical memory 

organization.

 Understand how each level of memory 

contributes to system performance, and how the 

performance is measured.

 Master the concepts behind cache memory, 

virtual memory, memory segmentation, paging 

and address translation.
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6.1 Introduction
 Memory lies at the heart of the stored-program 

computer.

 In previous chapters, we studied the 
components from which memory is built and 
the ways in which memory is accessed by 
various ISAs.

 In this chapter, we focus on memory 
organization.  A clear understanding of these 
ideas is essential for the analysis of system 
performance.
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6.2 Types of Memory
 There are two kinds of main memory: random 

access memory, RAM, and read-only-memory, 
ROM.

 There are two types of RAM, dynamic RAM 
(DRAM) and static RAM (SRAM).

 DRAM consists of capacitors that slowly leak their 
charge over time.  Thus, they must be refreshed 
every few milliseconds to prevent data loss.

 DRAM is “cheap” memory owing to its simple 
design.
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6.2 Types of Memory

 SRAM consists of circuits similar to the D flip-flop that 
we studied in Chapter 3.

 SRAM is very fast memory and it doesn’t need to be 
refreshed like DRAM does.  It is used to build cache 
memory, which we will discuss in detail later.

 ROM also does not need to be refreshed, either.  In 
fact, it needs very little charge to retain its memory.

 ROM is used to store permanent, or semi-permanent 
data that persists even while the system is turned off.
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6.3 The Memory Hierarchy

 Generally speaking, faster memory is more 
expensive than slower memory.

 To provide the best performance at the lowest 
cost, memory is organized in a hierarchical
fashion.

 Small, fast storage elements are kept in the CPU, 
larger, slower main memory is accessed through 
the data bus.

 Larger, (almost) permanent storage in the form of 
disk and tape drives is still further from the CPU.
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6.3 The Memory Hierarchy
 This storage organization can be thought of as a pyramid:
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6.3 The Memory Hierarchy
 We are most interested in the memory hierarchy 

that involves registers, cache, main memory, and 
virtual memory.

 Registers are storage locations available on the 
processor itself.

 Virtual memory is typically implemented using a 
hard drive; it extends the address space from 
RAM to the hard drive.

 Virtual memory provides more space: Cache 
memory provides speed.
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6.3 The Memory Hierarchy

 To access a particular piece of data, the CPU 
first sends a request to its nearest memory, 
usually cache.  

 If the data is not in cache, then main memory is 
queried.  If the data is not in main memory, then 
the request goes to disk.

 Once the data is located, then the data, and a 
number of its nearby data elements are fetched 
into cache memory.
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6.4 Cache Memory

 The purpose of cache memory is to speed up 
accesses by storing recently used data closer to the 
CPU, instead of storing it in main memory.

 Although cache is much smaller than main memory, 
its access time is a fraction of that of main memory.

 Three types of cache:
 Direct mapped cache

 Fully associative cache

 Set associative cache

14
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6.4 Cache Memory

 The simplest cache mapping scheme is direct 
mapped cache.

 In a direct mapped cache consisting of N blocks 
of cache, block X of main memory maps to cache 
block Y = X mod N.

 Thus, if we have 10 blocks of cache, block 7 of 
cache may hold blocks 7, 17, 27, 37, . . . of main 
memory.
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The next slide illustrates this mapping.

6.4 Cache Memory

 With direct 
mapped cache 
consisting of N
blocks of 
cache, block X
of main 
memory maps 
to cache block 
Y = X mod N.
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6.4 Cache Memory

 A larger 
example.
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6.4 Cache Memory

 To perform direct mapping, the binary main memory 
address is partitioned into the fields shown below.
 The offset field uniquely identifies an address 

within a specific block.
 The block field selects a unique block of cache.
 The tag field is whatever is left over.

 The sizes of these fields are determined by 
characteristics of both memory and cache. 18
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6.4 Cache Memory

 EXAMPLE 6.1 Consider a byte-addressable main 
memory consisting of 4 blocks, and a cache with 2 
blocks, where each block is 4 bytes. 

 This means Block 0 and 2 of main memory map to 
Block 0 of cache, and Blocks 1 and 3 of main 
memory map to Block 1 of cache.

 Using the tag, block, and offset fields, we can see 
how main memory maps to cache as follows.

19

6.4 Cache Memory
 EXAMPLE 6.1 Cont’d Consider a byte-addressable main 

memory consisting of 4 blocks, and a cache with 2 
blocks, where each block is 4 bytes. 

 First, we need to determine the address format for mapping. 

Each block is 4 bytes, so the offset field must contain 2 bits; 

there are 2 blocks in cache, so the block field must contain 1 bit; 

this leaves 1 bit for the tag (as a main memory address has 4 

bits because there are a total of 24=16 bytes).
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6.4 Cache Memory

EXAMPLE 6.1 Cont'd

Suppose we need to access 

main memory address 316
(0x0011 in binary). If we partition 

0x0011 using the address format 

from Figure a, we get Figure b.

Thus, the main memory address 

0x0011 maps to cache block 0.

 Figure c shows this mapping, 

along with the tag that is also 

stored with the data.
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a

b

The next slide illustrates 
another mapping.

c

6.4 Cache Memory

22
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6.4 Cache Memory
 EXAMPLE 6.2 Assume a byte-addressable memory 

consists of 214 bytes, cache has 16 blocks, and each block 
has 8 bytes. 
 The number of memory blocks are:
 Each main memory address requires14 bits. Of this 

14-bit address field, the rightmost 3 bits reflect the 
offset field 

 We need 4 bits to select a specific block in cache, so 
the block field consists of the middle 4 bits. 

 The remaining 7 bits make up the tag field. 

23

6.4 Cache Memory

 EXAMPLE 6.3 Assume a byte-addressable memory 
consisting of 16 bytes divided into 8 blocks.  Cache 
contains 4 blocks. We know:
 A memory address has 4 bits.
 The 4-bit memory address is divided into the fields 

below. 
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6.4 Cache Memory

 EXAMPLE 6.3 Cont’d The mapping for memory 
references is shown below:
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6.4 Cache Memory

 EXAMPLE 6.4 Consider 16-bit memory addresses and 
64 blocks of cache where each block contains 8 bytes. 
We have:
 3 bits for the offset
 6 bits for the block
 7 bits for the tag.

 A memory reference for 0x0404 maps as follows:

26
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6.4 Cache Memory

 In summary, direct mapped cache maps main 
memory blocks in a modular fashion to cache 
blocks. The mapping depends on:

 The number of bits in the main memory address 
(how many addresses exist in main memory)

 The number of blocks are in cache (which 
determines the size of the block field)

 How many addresses (either bytes or words) 
are in a block (which determines the size of the 
offset field)
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6.4 Cache Memory

 Suppose instead of placing memory blocks in 
specific cache locations based on memory 
address, we could allow a block to go anywhere
in cache.

 In this way, cache would have to fill up before 
any blocks are evicted.

 This is how fully associative cache works.  

 A memory address is partitioned into only two 
fields: the tag and the word.
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6.4 Cache Memory
 Suppose, as before, we have 14-bit memory 

addresses and a cache with 16 blocks, each block 
of size 8.  The field format of a memory reference 
is:

 When the cache is searched, all tags are searched 
in parallel to retrieve the data quickly.

 This requires special, costly hardware.
29

6.4 Cache Memory

 You will recall that direct mapped cache evicts a 
block whenever another memory reference 
needs that block.

 With fully associative cache, we have no such 
mapping, thus we must devise an algorithm to 
determine which block to evict from the cache.

 The block that is evicted is the victim block.

 There are a number of ways to pick a victim, we 
will discuss them shortly.
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6.4 Cache Memory
 Set associative cache combines the ideas of direct 

mapped cache and fully associative cache.

 An N-way set associative cache mapping is like 
direct mapped cache in that a memory reference 
maps to a particular location in cache.

 Unlike direct mapped cache, a memory reference 
maps to a set of several cache blocks, similar to the 
way in which fully associative cache works.

 Instead of mapping anywhere in the entire cache, a 
memory reference can map only to the subset of 
cache slots.
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6.4 Cache Memory

 The number of cache blocks per set in set associative 
cache varies according to overall system design.

32

– For example, a 2-way set associative 
cache can be conceptualized as shown in 
the schematic below.

– Each set contains two different memory 
blocks.

Logical view Linear view

6.4 Cache Memory

 In set associative cache mapping, a memory 
reference is divided into three fields: tag, set, 
and offset.

 As with direct-mapped cache, the offset field 
chooses the word within the cache block, and 
the tag field uniquely identifies the memory 
address.

 The set field determines the set to which the 
memory block maps.
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6.4 Cache Memory
 EXAMPLE 6.5 Suppose we are using 2-way set 

associative mapping with a word-addressable main 
memory of 214 words and a cache with 16 blocks, 
where each block contains 8 words. 

 Cache has a total of 16 blocks, and each set 
has 2 blocks, then there are 8 sets in cache. 

 Thus, the set field is 3 bits, the offset field is 
3 bits, and the tag field is 8 bits.

34
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6.5 Virtual Memory
 Cache memory enhances performance by providing 

faster memory access speed.
 Virtual memory enhances performance by providing 

greater memory capacity, without the expense of 
adding main memory.

 Instead, a portion of a disk drive serves as an 
extension of main memory.

 If a system uses paging, virtual memory partitions 
main memory into individually managed page 
frames, that are written (or paged) to disk when they 
are not immediately needed.
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6.5 Virtual Memory
 A physical address is the actual memory address 

of physical memory.

 Programs create virtual addresses that are 
mapped to physical addresses by the memory 
manager.

 Page faults occur when a logical address requires 
that a page be brought in from disk.

 Memory fragmentation occurs when the paging 
process results in the creation of small, unusable 
clusters of memory addresses.
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6.5 Virtual Memory

 Main memory and virtual memory are divided into 
equal sized pages.

 The entire address space required by a process 
need not be in memory at once. Some parts can 
be on disk, while others are in main memory.

 Further, the pages allocated to a process do not 
need to be stored contiguously -- either on disk or 
in memory.

 In this way, only the needed pages are in memory 
at any time, the unnecessary pages are in slower 
disk storage.

58
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6.5 Virtual Memory
 Information concerning the location of each page, 

whether on disk or in memory, is maintained in a data 
structure called a page table (shown below).

 There is one page table for each active process.

59

6.5 Virtual Memory

 When a process generates a virtual address, the 
operating system translates it into a physical 
memory address.

 To accomplish this, the virtual address is divided 
into two fields: A page field, and an offset field.

 The page field determines the page location of the 
address, and the offset indicates the location of the 
address within the page.

 The logical page number is translated into a 
physical page frame through a lookup in the page 
table.
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6.5 Virtual Memory

 If the valid bit is zero in the page table entry for the 
logical address, this means that the page is not in 
memory and must be fetched from disk.

 This is a page fault.
 If necessary, a page is evicted from memory 

and is replaced by the page retrieved from 
disk, and the valid bit is set to 1.

 If the valid bit is 1, the virtual page number is 
replaced by the physical frame number.

 The data is then accessed by adding the offset to 
the physical frame number. 61

6.5 Virtual Memory

 As an example, suppose a system has a virtual address 
space of 8K and a physical address space of 4K, and the 
system uses byte addressing.
 We have 213/210 = 23 virtual pages.

 A virtual address has 13 bits (8K = 213) with 3 bits for the page 
field and 10 for the offset, because the page size is 1024.

 A physical memory address requires 12 bits, the first two bits for 
the page frame and the trailing 10 bits the offset.

62
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6.5 Virtual Memory

 Suppose we have the page table shown below.

 What happens when CPU generates address 
545910 = 10101010100112 = 0x1553? 

63

6.5 Virtual Memory

 What happens when CPU generates address 
545910 = 10101010100112 = 0x1553? 
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The high-order 3 bits of the virtual address, 101 
(510), provide the page number in the page table. 

6.5 Virtual Memory
 The address 10101010100112 is converted to 

physical address 0101010100112 = 0x553 because 
the page field 101 is replaced by frame number 01 
through a lookup in the page table.

65

6.5 Virtual Memory
 What happens when the CPU generates address 

10000000001002?

66
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6.5 Virtual Memory
 We said earlier that effective access time (EAT) 

takes all levels of memory into consideration.

 Thus, virtual memory is also a factor in the 
calculation, and we also have to consider page table 
access time.

 Suppose a main memory access takes 200ns, the 
page fault rate is 1%, and it takes 10ms to load a 
page from disk.  We have:

EAT = 0.99(200ns + 200ns) + 0.01(10ms) = 
100.396us.
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6.5 Virtual Memory
 Even if we had no page faults, the EAT would be 

400ns because memory is always read twice: First to 
access the page table, and second to load the page 
from memory.

 Because page tables are read constantly, it makes 
sense to keep them in a special cache called a 
translation look-aside buffer (TLB).

 TLBs are a special associative cache that stores the 
mapping of virtual pages to physical pages.
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The next slide shows address lookup 
steps  when a TLB is involved.
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1. Extract the page number from 

the virtual address.
2. Extract the offset from the virtual address.

3. Search for the virtual page number in the 
TLB.
4. If the (virtual page #, page frame #) pair is 
found in the TLB, add the offset to the 
physical frame number and access the 
memory location.
5. If there is a TLB miss, go to the page table 
to get the necessary frame number.
If the page is in memory, use the 
corresponding frame number and add the 
offset to yield the physical address.

6. If the page is not in main memory, generate 
a page fault and restart the access when the 
page fault is complete.

TLB lookup process
6.5 Virtual Memory

70

Putting it all together: 
The TLB, Page Table, 
and Main Memory
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6.5 Virtual Memory
 Another approach to virtual memory is the use of 

segmentation.
 Instead of dividing memory into equal-sized pages, 

virtual address space is divided into variable-length
segments, often under the control of the programmer.

 A segment is located through its entry in a segment 
table, which contains the segment’s memory location 
and a bounds limit that indicates its size.  

 After a page fault, the operating system searches for a 
location in memory large enough to hold the segment 
that is retrieved from disk.
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6.5 Virtual Memory
 Both paging and segmentation can cause 

fragmentation.

 Paging is subject to internal fragmentation because a 
process may not need the entire range of addresses 
contained within the page.  Thus, there may be many 
pages containing unused fragments of memory. 

 Segmentation is subject to external fragmentation, 
which occurs when contiguous chunks of memory 
become broken up as segments are allocated and 
deallocated over time.
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The next slides illustrate internal and external fragmentation. 

6.5 Virtual Memory
 Consider a small computer 

having 32K of memory.

 The 32K memory is divided 
into 8 page frames of 4K 
each.

 A schematic of this 
configuration is shown at the 
right.

 The numbers at the right are 
memory frame addresses.
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6.5 Virtual Memory

 Suppose there are four 
processes waiting to be 
loaded into the system with 
memory requirements as 
shown in the table.

 We observe that these 
processes require 31K of 
memory.

74
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6.5 Virtual Memory

 When the first three processes 
are loaded, memory looks like 
this:

 All of the frames are occupied by 
three of the processes.
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6.5 Virtual Memory
 Despite the fact that there are 

enough free bytes in memory to load 
the fourth process, P4 has to wait for 
one of the other three to terminate, 
because there are no unallocated 
frames.

 This is an example of internal
fragmentation.
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6.5 Virtual Memory

 Suppose that instead of 
frames, our 32K system 
uses segmentation.

 The memory segments 
of two processes is 
shown in the table at the 
right.

 The segments can be 
allocated anywhere in 
memory.
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6.5 Virtual Memory

 All of the segments of P1 and one of 
the segments of P2 are loaded as 
shown at the right.

 Segment S2 of process P2  requires 
11K of memory, and there is only 1K 
free, so it waits.

78
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6.5 Virtual Memory
 Eventually, Segment 2 of Process 

1 is no longer needed, so it is 
unloaded giving 11K of free 
memory.

 But Segment 2 of Process 2 
cannot be loaded because the free 
memory is not contiguous.
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6.5 Virtual Memory
 Over time, the problem gets 

worse, resulting in small
unusable blocks scattered 
throughout physical memory.

 This is an example of external
fragmentation.

 Eventually, this memory is 
recovered through 
compaction, and the process 
starts over.
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6.6 A Real-World Example
 The Pentium architecture supports both paging and 

segmentation, and they can be used in various 
combinations including unpaged unsegmented, 
segmented unpaged, and unsegmented paged.

 The processor supports two levels of cache (L1 and 
L2), both having a block size of 32 bytes.

 The L1 cache is next to the processor, and the L2 
cache sits between the processor and memory.

 The L1 cache is in two parts: and instruction cache (I-
cache) and a data cache (D-cache).
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The next slide shows this organization schematically. 

6.6 A Real-World Example

83
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Chapter 6 Conclusion
 Computer memory is organized in a hierarchy, with the smallest, 

fastest memory at the top and the largest, slowest memory at the 
bottom.

 Cache memory gives faster access to main memory, while virtual
memory uses disk storage to give the illusion of having a large 
main memory.

 Cache maps blocks of main memory to blocks of cache memory. 
Virtual memory maps page frames to virtual pages.

 There are three general types of cache: Direct mapped, fully 
associative and set associative.

 All virtual memory must deal with fragmentation, internal for paged 
memory, external for segmented memory.
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