
Chapter 4 – MARIE: An Introduction
to a Simple Computer

CS 271 Computer Architecture

Purdue University Fort Wayne

1

Chapter 4 Objectives

 Learn the components common to every modern

computer system.

 Memory organization and addressing

 Be able to explain how each component contributes to

program execution.

 Understand a simple architecture invented to

illuminate these basic concepts, and how it relates to

some real architectures.

 MARIE

 Know how the program assembly process works. 2

4.1 Introduction

 Chapter 1 presented a general overview of computer

systems.

 In Chapter 2, we discussed how data is stored and

manipulated by various computer system

components.

 Chapter 3 described the fundamental components of

digital circuits.

 Having this background, we can now understand

how computer components work, and how they fit

together to create useful computer systems.

3

4.2 CPU Basics

 The computer’s CPU fetches, decodes, and executes

program instructions.

 The two principal parts of the CPU are the datapath and

the control unit.

 The datapath consists of an arithmetic-logic unit
and storage units (registers) that are
interconnected by a data bus that is also connected
to main memory.

 Various CPU components perform sequenced
operations according to signals provided by its
control unit.

4

4.2 CPU Basics

 Registers hold data that can be readily accessed by

the CPU.

 They can be implemented using D flip-flops.

 A 32-bit register requires 32 D flip-flops.

 The arithmetic-logic unit (ALU) carries out logical

and arithmetic operations as directed by the control

unit.

 The control unit determines which actions to carry

out according to the values in a program counter

register and a status register.

5

4.3 The Bus
 The CPU shares data with other system

components by way of a data bus.

 A bus is a set of wires that simultaneously
convey a single bit along each line.

 Two types of buses are commonly found in

computer systems: point-to-point, and multipoint

buses.

These are point-to-

point buses:

6

4.3 The Bus
 A multipoint bus is shown below.

 Because a multipoint bus is a shared resource,

access to it is controlled through protocols, which

are built into the hardware.

7

4.3 The Bus

 Buses consist of data lines, control lines, and

address lines.

 Data lines convey bits from one device to

another.

 Control lines determine the direction of data

flow, and when each device can access the bus.

 Address lines determine the location of the

source or destination of the data.

8

4.3 The Bus

9

4.4 Clocks
 Every computer contains at least one clock that

synchronizes the activities of its components.

 A fixed number of clock cycles are required to carry

out each data movement or computational

operation.

 The clock frequency, measured in megahertz or

gigahertz, determines the speed with which all

operations are carried out.

 Clock cycle time is the reciprocal of clock frequency.

 An 800 MHz clock has a cycle time of 1.25 ns.
11

4.4 Clocks
 Clock speed should not be confused with CPU

performance.

 The CPU time required to run a program is given by the

general performance equation:

 We see that we can improve CPU throughput
 Reduce the number of instructions in a program

 Reduce the number of cycles per instruction

 Reduce the number of nanoseconds per clock cycle

12

4.5 The Input/Output
Subsystem

 A computer communicates with the outside world

through its input/output (I/O) subsystem.

 I/O devices connect to the CPU through various

interfaces.

 I/O can be memory-mapped, where the I/O device

behaves like main memory from the CPU’s point of view.

 I/O can be instruction-based, where the CPU has a

specialized I/O instruction set.

13

4.6 Memory Organization

 Computer memory consists of a linear array of

addressable storage cells that are similar to registers.

 Memory can be byte-addressable, or word-

addressable, where a word typically consists of two or

more bytes.

 Memory is constructed of RAM chips, often referred to

in terms of length  width.

 If the memory word size of the machine is 16 bits,

then a 4M  16 RAM chip gives us 4 megabytes of

16-bit memory locations.

14

4.6 Memory Organization
 How does the computer access a memory location

corresponds to a particular address?

 We observe that 4M can be expressed as 2 2  2 20 =

2 22 words.

 The memory locations for this memory are numbered

0 through 2 22 -1.

 Thus, the memory bus of this system requires at least

22 address lines.

 The address lines “count” from 0 to 222 - 1 in
binary. Each line is either “on” or “off” indicating
the location of the desired memory element.

15

4.6 Memory Organization

 Physical memory usually consists of more than one

RAM chip.

 Access is more efficient when memory is organized

into banks of chips with the addresses interleaved

across the chips

 With low-order interleaving, the low order bits of the

address specify which memory bank contains the

address of interest.

 Accordingly, in high-order interleaving, the high

order address bits specify the memory bank.

16

4.6 Memory Organization

 Example: Suppose we have a memory consisting of

16 2K x 8 bit chips.

– Memory is 32K = 25  210 = 215

– 15 bits are needed for each

address.

– We need 4 bits to select the chip,

and 11 bits for the offset into the

chip that selects the byte.

17

4.6 Memory Organization
 In high-order interleaving the high-

order 4 bits select the chip.

 In low-order interleaving the low-order

4 bits select the chip.

18

4.6 Memory Organization

19

4.6 Memory Organization

20

4.6 Memory Organization

 EXAMPLE 4.1 Suppose we have a 128-word

memory that is 8-way low-order interleaved

 which means it uses 8 memory banks; 8 =
23

 So we use the low-order 3 bits to identify the bank.

 Because we have 128 words, we need 7 bits for

each address (128 = 2 7).

21

4.7 Interrupts

 The normal execution of a program is altered when an

event of higher-priority occurs. The CPU is alerted to such

an event through an interrupt.

 Interrupts can be triggered by
 I/O requests

 arithmetic errors (such as division by zero)

 when an invalid instruction is encountered

 Each interrupt is associated with a procedure that directs

the actions of the CPU when an interrupt occurs.

 Nonmaskable interrupts are high-priority interrupts
that cannot be ignored.

22

4.8 MARIE
 We can now bring together many of the ideas that

we have discussed to this point using a very simple

model computer.

 Our model computer, the Machine Architecture that

is Really Intuitive and Easy, MARIE, was designed

for the singular purpose of illustrating basic

computer system concepts.

 While this system is too simple to do anything useful

in the real world, a deep understanding of its

functions will enable you to comprehend system

architectures that are much more complex.
23

4.8 MARIE
The MARIE architecture has the following

characteristics:
• Binary, two's complement data representation.

• Stored program, fixed word length data and

instructions.

• 4K words of word-addressable main memory.

• 16-bit data words.

• 16-bit instructions, 4 for the opcode and 12 for the

address.

• A 16-bit arithmetic logic unit (ALU).

• Seven registers for control and data movement.

24

4.8 MARIE

MARIE’s seven registers are:

• Accumulator, AC, a 16-bit register that holds a

conditional operator (e.g., "less than") or one

operand of a two-operand instruction.

• Memory address register, MAR, a 12-bit register that

holds the memory address of an instruction or the

operand of an instruction.

• Memory buffer register, MBR, a 16-bit register that

holds the data after its retrieval from, or before its

placement in memory.

25

4.8 MARIE

MARIE’s seven registers are:

• Program counter, PC, a 12-bit register that holds the

address of the next program instruction to be

executed.

• Instruction register, IR, which holds an instruction

immediately preceding its execution.

• Input register, InREG, an 8-bit register that holds

data read from an input device.

• Output register, OutREG, an 8-bit register, that holds

data that is ready for the output device.

26

4.8 MARIE

27

This is the MARIE architecture shown graphically.

4.8 MARIE
 The registers are interconnected, and connected

with main memory through a common data bus.

 Each device on the bus is identified by a unique

number that is set on the control lines whenever

that device is required to carry out an operation.

 Separate connections are also provided between

the accumulator and the memory buffer register,

and the ALU and the accumulator and memory

buffer register.

 This permits data transfer between these devices

without use of the main data bus.

28

4.8 MARIE

This is the MARIE data

path shown graphically.

29

4.8 MARIE

 A computer’s instruction set architecture (ISA)

specifies the format of its instructions and the

primitive operations that the machine can perform.

 The ISA is an interface between a computer’s

hardware and its software.

 Some ISAs include hundreds of different instructions

for processing data and controlling program

execution.

 The MARIE ISA consists of only fifteen instructions.

30

4.8 MARIE

 This is the format

of a MARIE instruction:

 The fundamental MARIE instructions are:

31

4.8 MARIE

 This is a bit pattern for a LOAD instruction as it would

appear in the IR:

 We see that the opcode is 1 and the address from

which to load the data is 3.

32

4.8 MARIE

 This is a bit pattern for a SKIPCOND instruction as it

would appear in the IR:

 We see that the opcode is 8 and bits 11 and 10 are

10, meaning that the next instruction will be skipped

if the value in the AC is greater than zero.

What is the hexadecimal representation of this instruction?

33

4.8 MARIE

 Each of our instructions actually consists of a

sequence of smaller instructions called

microoperations.

 The exact sequence of microoperations that are

carried out by an instruction can be specified using

register transfer language (RTL).

 In the MARIE RTL, we use the notation M[X] to

indicate the actual data value stored in memory

location X, and  to indicate the transfer of bytes to

a register or memory location.

34

4.8 MARIE

 The RTL for the LOAD instruction is:

 Similarly, the RTL for the ADD instruction is:

MAR  X

MBR  M[MAR]

AC  AC + MBR

MAR  X

MBR  M[MAR]

AC  MBR

35

4.8 MARIE

 Recall that SKIPCOND skips the next instruction

according to the value of the AC.

 The RTL for the this instruction is the most complex

in our instruction set:

If IR[11 - 10] = 00 then

If AC < 0 then PC  PC + 1

else If IR[11 - 10] = 01 then

If AC = 0 then PC  PC + 1

else If IR[11 - 10] = 10 then

If AC > 0 then PC  PC + 1

36

4.9 Instruction Processing

 The fetch-decode-execute cycle is the series of

steps that a computer carries out when it runs a

program.

 We first have to fetch an instruction from memory,

and place it into the IR.

 Once in the IR, it is decoded to determine what

needs to be done next.

 If a memory value (operand) is involved in the

operation, it is retrieved and placed into the MBR.

 With everything in place, the instruction is executed.

The next slide shows a flowchart of this process.
37

4.9 Instruction Processing

38

4.9 Instruction Processing

 All computers provide a way of interrupting the

fetch-decode-execute cycle.

 Interrupts occur when:

 A user break (e.,g., Control+C) is issued

 I/O is requested by the user or a program

 A critical error occurs

 Interrupts can be caused by hardware or

software.

 Software interrupts are also called traps.

39

4.9 Instruction Processing

 Interrupt processing involves adding another step to

the fetch-decode-execute cycle as shown below.

The next slide shows a flowchart of “Process the interrupt.” 40

4.9 Instruction Processing

41

4.9 Instruction Processing

 For general-purpose systems, it is common to

disable all interrupts during the time in which an

interrupt is being processed.

 Typically, this is achieved by setting a bit in
the flags register.

 Interrupts that are ignored in this case are called

maskable.

 Nonmaskable interrupts are those interrupts that

must be processed in order to keep the system

in a stable condition.

42

4.9 Instruction Processing

 Interrupts are very useful in processing I/O.

 However, interrupt-driven I/O is complicated, and is

beyond the scope of our present discussion.

 Greater detail in Chapter 7.

 MARIE, being the simplest of simple systems, uses a

modified form of programmed I/O.

 All output is placed in an output register, OutREG, and

the CPU polls the input register, InREG, until input is

sensed, at which time the value is copied into the

accumulator.
43

4.10 A Simple Program

 Consider the simple MARIE program given below.

We show a set of mnemonic instructions stored at

addresses 0x100 – 0x106 (hex):

44

4.10 A Simple Program

 Let’s look at what happens inside the computer

when our program runs.

 This is the LOAD 104 instruction:

45

4.10 A Simple Program

 Our second instruction is ADD 105:

46

4.11 A Discussion on Assemblers

 Mnemonic instructions, such as LOAD 104, are

easy for humans to write and understand.

 They are impossible for computers to understand.

 Assemblers translate instructions that are

comprehensible to humans into the machine

language that is comprehensible to computers

 We note the distinction between an assembler
and a compiler: In assembly language, there
is a one-to-one correspondence between a
mnemonic instruction and its machine code.
With compilers, this is not usually the case.

47

4.11 A Discussion on Assemblers

 Assemblers create an object program file from

mnemonic source code in two passes.

 During the first pass, the assembler assembles as

much of the program as it can, while it builds a

symbol table that contains memory references for

all symbols in the program.

 During the second pass, the instructions are

completed using the values from the symbol table.

48

4.11 A Discussion on Assemblers

 Consider our example

program at the right.

 Note that we have
included two
directives HEX and
DEC that specify the

radix of the
constants.

 The first pass, creates

a symbol table and the

partially-assembled

instructions as shown.

49

4.11 A Discussion on Assemblers

 After the second pass,

the assembly is

complete.

50

4.12 Extending Our Instruction Set

 So far, all of the MARIE instructions that we have

discussed use a direct addressing mode.

 This means that the address of the operand is

explicitly stated in the instruction.

 It is often useful to employ a indirect addressing,

where the address of the address of the operand

is given in the instruction.

 If you have ever used pointers in a
program, you are already familiar with
indirect addressing.

51

4.12 Extending Our Instruction Set

 We have included three indirect addressing mode

instructions in the MARIE instruction set.

 The first two are LOADI X and STOREI X where

specifies the address of the operand to be loaded

or stored.

 In RTL : MAR  X

MBR  M[MAR]

MAR  MBR

MBR  M[MAR]

AC  MBR

MAR  X

MBR  M[MAR]

MAR  MBR

MBR  AC

M[MAR]  MBR

STOREI X
52

4.12 Extending Our Instruction Set

 The ADDI instruction is a combination of LOADI X

and ADD X:

 In RTL:
MAR  X

MBR  M[MAR]

MAR  MBR

MBR  M[MAR]

AC  AC + MBR

ADDI X

53

4.12 Extending Our Instruction Set

 Another helpful programming tool is the use of

subroutines.

 The jump-and-store instruction, JNS, gives us

limited subroutine functionality. The details of the
JNS instruction are given by the following RTL:

MBR  PC

MAR  X

M[MAR]  MBR

MBR  X

AC  1

AC  AC + MBR

PC  AC

Does JNS permit

recursive calls?

54

4.12 Extending Our Instruction Set

 Our first new instruction is the CLEAR instruction.

 All it does is set the contents of the accumulator to

all zeroes.

 This is the RTL for CLEAR:

 We put our new instructions to work in the

programs (examples).

AC  0

55

56

MARIE's Full
Instruction Set

EXAMPLES

58

4.13 A Discussion on Decoding

 A computer’s control unit keeps things

synchronized, making sure that bits flow to the

correct components as the components are

needed.

 There are two general ways in which a control unit

can be implemented: hardwired control and

microprogrammed control.

 Hardwired controllers implement this program
using digital logic components.

 With microprogrammed control, a small
program is placed into read-only memory in
the microcontroller.

59

4.13 A Discussion on Decoding

 Your text provides a complete list of the register

transfer language for each of MARIE’s instructions.

 The microoperations given by each RTL define the

operation of MARIE’s control unit.

 Each microoperation consists of a distinctive signal

pattern that is interpreted by the control unit and

results in the execution of an instruction.

 Recall, the RTL for the Add instruction is:

MAR  X

MBR  M[MAR]

AC  AC + MBR 60

4.13 A Discussion on Decoding

 Each of MARIE’s

registers and main

memory have a unique

address along the

datapath.

 The addresses take the

form of signals issued

by the control unit.

How many signal lines does

MARIE’s control unit need?

61

4.13 A Discussion on Decoding

 Let us define two sets of

three signals.

 One set, P2, P1, P0,

controls reading from

memory or a register,

and the other set

consisting of P5, P4, P3,

controls writing to

memory or a register.

The next slide shows a close up

view of MARIE’s MBR.

62

4.13 A Discussion on Decoding

This register is enabled for reading when P0 and P1 are

high, and enabled for writing when P3 and P4 are high

63

4.13 A Discussion on Decoding

 Careful inspection of MARIE’s RTL reveals that

the ALU has only three operations: add, subtract,

and clear.
 We will also define a fourth “do nothing” state.

• The entire set of MARIE’s

control signals consists of:

– Register controls: P0 through

P5, MR , and MW.

– ALU controls: A0 and A1

– MBR and AC: LALT to control

the data source.

– Timing: T0 through T7 and

counter reset Cr

64

4.13 A Discussion on Decoding

 Consider MARIE’s Add instruction. Its RTL is:
MAR  X

MBR  M[MAR]

AC  AC + MBR

 After an Add instruction is fetched, the address, X,

is in the rightmost 12 bits of the IR, which has a

datapath address of 7.

 X is copied to the MAR, which has a datapath

address of 1.

 Thus we need to raise signals P0, P1, and P2 to

read from the IR, and signal P3 to write to the MAR.

65

4.13 A Discussion on Decoding

 Here is the complete signal sequence for MARIE’s

Add instruction:
P3 P2 P1 P0 T3 : MAR  X

P4 P3 T4 MR : MBR  M[MAR]

Cr A0 P5 T5 LALT : AC  AC + MBR

[Reset counter]

 These signals are ANDed with combinational logic to

bring about the desired machine behavior.

 The next slide shows the timing diagram for this

instruction.

66

4.13 Decoding

P3 P2 P1 P0 T3 : MAR  X

P4 P3 T4 MR : MBR  M[MAR]

Cr A0 P5 T5 LALT : AC  AC + MBR

[Reset counter]

• Notice the concurrent signal

states during each machine

cycle: C3 through C5.

67

 We note that the signal pattern just described is

the same whether our machine used hardwired

or microprogrammed control.

 In hardwired control, the bit pattern of machine

instruction in the IR is decoded by combinational

logic.

 The decoder output works with the control signals

of the current system state to produce a new set

of control signals.

4.13 A Discussion on Decoding

A block diagram of a hardwired control

unit is shown on the following slide.
68

4.13 A Discussion on Decoding

69

MARIE's
instruction
decoder.
(Partial.)

4.13 A Discussion on Decoding

70

A Mod-5
counter:
0000->
1000->
0100->
0010->

0001->0000

4.13 A Discussion on Decoding

71

This is the
hardwired
logic for
MARIE’s
Add = 0011

instruction.

72

4.14 Real World Architectures

 MARIE shares many features with modern

architectures but it is not an accurate

depiction of them.

 Two machine architectures:

 Intel architecture is a CISC machine. CISC is

an acronym for complex instruction set
computer.

 MIPS, which is a RISC machine. RISC stands

for reduced instruction set computer.

80

Chapter 4 Conclusion

 The major components of a computer system

are its control unit, registers, memory, ALU,

and data path.

 A built-in clock keeps everything synchronized.

 Control units can be microprogrammed or

hardwired.

 Hardwired control units give better

performance, while microprogrammed units are

more adaptable to changes.

87

Chapter 4 Conclusion

 Computers run programs through iterative

fetch-decode-execute cycles.

 Computers can run programs that are in

machine language.

 An assembler converts mnemonic code to

machine language.

 The Intel architecture is an example of a CISC

architecture; MIPS is an example of a RISC

architecture.

88

