
Chapter 3 – Boolean Algebra
and Digital Logic

CS 271 Computer Architecture

Purdue University Fort Wayne

1

Objectives

 Understand the relationship between Boolean

logic and digital computer circuits.

 Learn how to design simple logic circuits.

 Understand how digital circuits work together to

form complex computer systems.

2

 In the latter 19th century, George Boole suggested

that logical thought could be represented through

mathematical equations.

 Boolean algebra is everywhere

 https://www.google.com/doodles/george-booles-

200th-birthday

Introduction

3

https://www.google.com/doodles/george-booles-200th-birthday

 Digital circuit

 Google search

 Database (SQL)

 Programming

 ……

Application of Boolean Algebra

4

An Example on Programming

while (((A && B) || (A && !B)) || !A)

{

// do something

}

5

3.2 Boolean Algebra

 Boolean algebra is a mathematical system for

manipulating variables that can have one of two

values.

 In formal logic, these values are “true” and
“false”

 In digital systems, these values are
“on”/“off,” “high”/“low,” or “1”/”0”.

 So, it is perfect for binary number systems

 Boolean expressions are created to operate

Boolean variables.

 Common Boolean operators include AND, OR,
and NOT.

6

 The function of Boolean operator

can be completely described

using a Truth Table.

 The truth tables of the Boolean

operators AND and OR are

shown on the right.

 The AND operator is also known

as the Boolean product “.”. The

OR operator is the Boolean sum

“+”.

Boolean Algebra

7

 The truth table of the

Boolean NOT operator is

shown on the right.

 The NOT operation is

most often designated by

an overbar “‾”.

 Some books use the prime
mark (‘) or the “elbow” (),

for instead.

Boolean NOT

8

 A Boolean function has:

• At least one Boolean variable,

• At least one Boolean operator, and

• At least one input from the set of {0,1}.

 It produces an output that is a member of the

set {0,1} – Either 0 or 1.

Now you know why the binary numbering system
is so handy for digital systems.

Boolean Function

9

 Let’s look at a truth table

for the following Boolean

function shown on the

right. :

 To valuate the Boolean

function easier, the truth

table contains a extra

columns (shaded) to hold

the evaluations of partial

function.

Boolean Algebra

10

 Arithmetic has its rules of

precedence

 Like arithmetic, Boolean

operations follow the rules

of precedence (priority):

 NOT operator > AND

operator > OR operator .

 This explains why we

chose the shaded partial

function in that order in

the table.

Rules Of Precedence

Rules Of Precedence

11

 Digital circuit designer always like achieve the following

goals:

 Cheaper to produce

 Consume less power

 run faster

 How to do it? -- We know that:

 Computers contain circuits that implement Boolean functions

Boolean functions can express circuits

 If we can simplify a Boolean function, that express a circuit, we can

archive the above goals

 We always can reduce a Boolean function to its
simplest form by using a number of Boolean laws
can help us do so.

Use Boolean Algebra in Circuit
Design

12

 Most Boolean algebra laws have either an AND

(product) form or an OR (sum) form. We give the

laws with both forms.

 Since the laws are always true, so X (and Y) could be

either 0 or 1

Boolean Algebra Laws

13

 The second group of Boolean laws should be

familiar to you from your study of algebra:

Boolean Algebra Laws (‘Cont)

14

 The last group of Boolean laws are perhaps the

most useful.

 If you have studied set theory or formal logic, these laws

should be familiar to you.

Boolean Algebra Laws (‘Cont)

15

 DeMorgan’s law provides an easy way of finding the

negation (complement) of a Boolean function.

 DeMorgan’s law states:

 Example

 I will come to school tomorrow if
 (A) my car is working, and

 (B) it won’t be snowing

 I won’t come to school tomorrow if
 (A) my car is not working, or

 (B) it will snowing

DeMorgan’s law

=

More Examples?

16

 DeMorgan’s law can be extended to any number

of variables.

 Replace each variable by its negation (complement)

 Change all ANDs to ORs and all ORs to ANDs.

 Let’s say F (X, Y, Z) is the following, what is ത𝐹 ?

DeMorgan’s Law

17

 Let’s use Boolean laws to simplify:

as follows:

Simplify Boolean function

18

19

 Apply De Morgan’s theorems

 Expanding out parenthesis

 Find the common factors

 Popular rules used:

X+XY=X X+X=X, XX=X

XY+XY=X X+0=X, X+1=1

X+XY=X+Y X0=0 X1=X

Logic simplification steps

20

WXYZ W+X+Y+Z

(A+B+C)D

AB+CD+EF

Example (1)

Apply De Morgan’s theorem

21

Example (2)

 (AB(C+BD)+AB)C

22

Example (3)

 ABC+ABC+ABC+ABC+ABC

23

Example (4)

 (AB+AC)+ABC

24

Example (5)

 AC+ABC+ABCD+ABD

25

Example (6)

 (A+B+C)(B+C)(A+B)

An Example on Programming

while (((A && B) || (A && !B)) || !A)

{

// do something

}

=

while (1)

{

// do something

} 26

 Through our exercises in simplifying Boolean

expressions, we see that there are 1+ ways of

stating the same Boolean expression.

 These “synonymous” forms are logically equivalent.

 Logically equivalent expressions could produce
confusions

 In order to eliminate the confusion, designers

express Boolean express in unified and

standardized form, called canonical form.

Boolean Algebra

=XZ

27

 There are two canonical forms for Boolean expressions:

sum-of-products and product-of-sums.

 Boolean product (x) AND logical

conjunction operator

 Boolean sum (+) OR logical conjunction

operator

 In the sum-of-products form, ANDed variables are

ORed together.

 For example:

 In the product-of-sums form, ORed variables are

ANDed together:

 For example:

Boolean Algebra

28

Minterm and Maxterm

 Some books uses sum-of-minterms form and
product-of-maxterms form

 A minterm is a logical expression of n
variables that employs only the complement
operator and the product operator.
 For example, abc, ab'c and abc' are 3 minterms

for a Boolean function of the three variables a, b,
and c.

 A maxterm is a logical expression of n
variables that employs only the complement
operator and the sum operator.

29

 It is easy to convert a function

to sum-of-products form from

its truth table.

 We only interested in the

production of the inputs which

yields TRUE (=1).

 We first highlight the lines that

result in 1.

 Then, we group them together

with OR.

Create Canonical Form Via

Truth Table

30

 Look at this example:

 It may not the simplest

form. But, it is the standard
sum-of-products canonical

form

Create Canonical Form Via Truth

Table (‘Cont)

31

Exercise

 Convert ABC+A'BC+AB'C+A'B'C+ABC'
to its simplest form

32

Exercise

 Convert AB + C to the sum-of-products

form

AB+C

33

 We’ve seen Boolean functions in abstract terms.

 You may still ask:
 How could Boolean function be used in

computer?

 In reality, Boolean functions are implemented as digital

circuits, which called Logic Gates.

 A logic gate is an electronic device that produces a

result based on input values.

 A logic gate may contain multiple transistors, but, we
think them as one integrated unit.

 Integrated circuits (IC) contain collections of gates,
for a particular purpose.

3.3 Logic Gates

34

 Three simplest gates are the AND, OR, and NOT

gates.

 Their symbol and their truth tables are listed above.

AND, OR, and NOT Gates

“inversion

bubble”

35

 NAND and NOR

are two additional

gates.

 Their symbols and

truth tables are

shown on the

right.

 NAND = NOT

AND

 NOR = NOT OR

NAND and NOR Gates

36

 NAND and NOR are

known as universal

gates! – gates of all

gates

 They are inexpensive

to produce

 More important: Any

Boolean function can

be constructed using

only NAND or only

NOR gates.

The Application of NAND and
NOR Gates

37

 The gates could have multiple inputs and/or multiple

outputs.

 The second output can be provided as the
complement of the first output.

 We’ll see more integrated circuits, which have
multiple inputs/outputs.

Multiple Inputs and Outputs of
Gates

39

 Another very useful gate is the Exclusive OR (XOR)

gate.

 The output of the XOR operation is true (1) only when

the values of inputs are different.

 The symbol for XOR is

XOR Gates

40

41

Parity generator / checker

 Electrical noise in the transmission of
binary information can cause errors

 Parity can detect these types of
errors

 Parity systems

 Odd parity

 Even parity

 Add a bit to the binary information

42

Even parity check

 Even parity check

 Example: input: A(7…0), Output:
even_parity bit
 If there are even numbers of 1 in A,

even_parity = ‘0’,

 If there are odd numbers of 1 in A,
even_parity = ‘1’

e.g., A = “10100001”,

even_parity = ‘1’

A = “10100011”,

even_parity = ‘0’

43

Odd parity check

 Odd parity check

 Example: input: A(7…0), Output:
odd_parity bit

 If there are odd numbers of 1 in A,
odd_parity = ‘0’,

 If there are even numbers of 1 in A,
odd_parity = ‘1’

e.g., A = “10100001”,

odd_parity = ‘0’

A = “10100011”,

odd_parity = ‘1’

44

Odd-parity generator/checker
system

45

Error detection

 Transmitting end: The parity generator
creates the parity bit.

 Receiving end: The parity checker
determines if the parity is correct.

 e.g., odd-parity check of 8-bit data

 Data send: 10111101 + 1

 Data received: 101011011

odd-parity check: The number of 1 is even →

error

46

Discussion point

 What are disadvantages of even parity
(or odd parity) check to detect
transmission errors? Consider the
following case:

 Protocol: 8-bit plus one even parity bit

 Information sent: 11011100 + 1

 Information received: 10010100 + 1

 The parity generator/checker system
detects only errors that occur to 1 bit.

47

Parity check using XOR

 N-1 XOR gates can be cascaded to form a
circuit with N inputs and a single output

– even-parity circuit.

 Example: N=8, Inputs=10111101, even-parity
output

=((10)(11))((11)(01))=0

 Odd-parity check circuit: even-parity check
circuit Inverted Odd-parity check

 Example: N=8, Inputs=10111101, odd-parity
output

=NOT(((10)(11))((11)(01)))=1

48

Binary comparators

 A n-bit comparator determines if two n-bit signal vectors
are equal:

EQ(X[1:n],Y[1:n])=(X1=Y1)(X2=Y2)….(Xn=Yn)

1-bit comparator

4-bit comparator

 A one-bit comparator is the same as the XOR

Two Types of Logic Circuits

 Combinational Logic Circuit (CLC)

 Good at designing computational
components in the CPU, such as ALU

 Sequential Logic Circuit (SLC)

 Good at designing memory components,
such as registers and memory

49

 We use the combination of gates to implement

Boolean functions.

 The circuit below implements the Boolean function:

Logic Gates

50

3.5 Combinational
Circuits

 The circuit implements the Boolean function:

 The major characteristics of this kind of circuits:

 The circuit produces an output almost immediately

after the inputs are given.

 This kind of circuits are called combinational

logic circuit (CLC).

 In a later section, we will explore circuits
where this is not the case.

51

Simplify CLC via Boolean

Algebra

 As I have mentioned previously:

 The simpler that we can express a Boolean function,

the smaller the circuit will be constructed.

 Simpler circuits are cheaper consume less
power run faster than complex circuits.

 We always want to reduce a Boolean function to its

simplest form.

 It is important to simplify combinational logic circuit

via Boolean algebra laws

52

Simplify CLC via Boolean

Algebra

 Look at this example

=

=

=

=

=

Can we simplify
this circuit? If

yes, then how?

53

Steps to Simplify a Complex
Circuit

 From this example, we know that the
basic steps to simplify a complex
circuit is the following:

 Step1: Express a logical circuit into a
Boolean expression

 Step2: Simplify the Boolean expression
as much as possible

 Step3: Re-express the simplified
expression back to a circuit.

54

Example of Simplify a Logical
Circuit

 Simplify the following circuit

55

Example of Simplify a Logical
Circuit

 Step1: Express a logical circuit into a
Boolean expression

56

Example of Simplify a Logical
Circuit

 Step2: Simplify the Boolean expression
as much as possible

57

Example of Simplify a Logical
Circuit

 Step3: Re-express the simplified
expression back to a circuit

Obviously, the simplified circuit is much
simpler than the original one

58

 Combinational logic circuits

can be used to create many

useful devices.

 Half Adder: Compute the

sum of two bits.

 Let’s gain some insight of

how to construct a half

adder by looking at its truth

table on the right.

Combinational Circuits: Half

Adder

59

 It consists two gates:

 a XOR gate -- the sum bit

 a AND gate -- the carry bit

Combinational Circuits: Half

Adder (‘Cont)

60

 We can extend the half

adder to a full adder,

which includes an

additional carry bit

(Carry In)

 The truth table for a full

adder is shown on the

right.

Combinational Circuits: Full

Adder

61

 How can we extend the

half adder to a full

adder?

Half Adder Full Adder ?

 Hint: First calculate X + Y by a half adder,

then the sum adds the carry in bit, then…… 62

The Full Adder

63

 Just as we combined half adders to construct a

full adder, full adders can be connected in series.

 The carry bit “ripples” from one adder to the next.

This configuration is called a ripple-carry adder.

 This is the full adder for two 16 bits!

Ripple-carry Adder

64

 Decoder is another important combinational circuit.

 It is used to select a memory location according a

address in binary form

 Application: given a memory address Obtain its

memory content.

 Address decoder with n inputs can select one out

of 2n locations.

Decoder

Address
Lines

Memory

65

Decoder

66

 This is a 2-to-4 decoder :

A 2-to-4 Decoder

0

1

0

0

1

0

Address:
01

Memory

Only this piece of
memory will be

chosen/accessed
67

68
74138 as a memory address decoder

 A multiplexer works just the

opposite to a decoder.

 It selects a single value

from multiple inputs.

 The chosen input for output

is determined by the value

of the multiplexer’s control

lines.

 To select from n inputs,

log2n control lines are

required.

Multiplexer

1 0 Address

M
em

o
ry

69

70

A four-line multiplexer

What is the logic equation for

the output Y =?

 This is a 4-to-1 multiplexer.

which input is transferred to the output?

Combinational Circuits

0

1

71

A Simple Two-Bit ALU

3.6 Sequential Logic Circuits (SLC)

 Combinational logic circuits are perfect for those

applications when a Boolean function be immediately

evaluated, given the current inputs.

 Examples: multiplexer, ripple-carry adder, shifter, etc

 However, sometimes, we need a kind of circuits that

change value by considering the current inputs and its

current state.

 Memory is such an example that requires to remember
the current state

 The circuits need to “remember” their states.

 Sequential logic circuits (SLC) provide this functionality.

75

How to “remember”?

 Think about the states in your own
life-time

 1 years old, blabla…

 2 years old, blabla…

 3 years old, blabla…

Time

76

 As the name implies, sequential logic circuits require a

means by which events can be sequenced.

 The change of states is triggered by the clock.

 The “clock” is a special circuit that sends

electrical pulses to a sequential logic circuit.

 Clocks produce electrical waveforms constantly, such

as the one shown below.

Essential Component of Sequential
Circuits: Clocks

77

 State changes occur in sequential circuits, only

when the clock ticks.

 A sequential logic circuits could changes it state

 Either, at the rising/falling edge of the clock pulse ,

 Or, when the clock pulse reaches its highest/lowest level.

When Change Its State?

78

 SLC that changes its state at the rising edge, or the

falling edge of the clock pulse is called Edge-

triggered SLC.

 SLC that changes its state when the clock voltage

reaches to its highest or lowest level are called

Level-triggered SLC.

Edge-triggered Or Level-triggered?

Edge-triggered SLC
Level-triggered SLC

79

Latch And Flip-flop

 latch and flip-flop are two kinds of SLCs,
which are used to construct memory

 A latch is level-triggered

 A flip-flop is edge-triggered

 Which one depends on the length of the clock
pulse?

 Latch, or

 flip-flop?

80

 The most important design mechanism of SLC is

Feedback

 Feedback can retain the state of sequential circuits

 Feedback in digital circuits occurs when an

output is looped back as an input.

 A simple example of this concept is shown

below.

 If Q is 0 it will always be 0, if it is 1, it will
always be 1. --- The motivation of Memory!

Essential Component Of
Sequential Circuits: Feedback

81

 You can see how feedback works by examining

the most basic sequential logic components, the

SR flip-flop.

 The “SR” stands for set/reset.

 The internals of an SR flip-flop are shown below,

along with its block diagram.

SR Flip-flop

Clock Driven

C
82

 The behavior of an SR flip-flop is illustrated in the

following truth table.

 Let’s denote Q(t) as the value of the output at time t, and

 Denote Q(t+1) is the value of Q at time t+1.

Behavior Of An SR Flip-flop

C 83

 We consider Q(t), its

current output, as the

third input for SR flip-

flop, besides S and R.

 The truth table for this

circuit, as shown on the

right.

 When both S and R are

1, the SR flip-flop is in

forbidden state

SR Flip-flop Truth Table

forbidden state

Q(t+1)
=Q(t)

0

1

Retain its
original value

Change its
value

84

Clocked SR Flip-flop

85

 One limitation of SR flip-flop is that, when S and

R are both 1, the output is undefined.
 This is not nice because it wastes a state

 Therefore, SR flip-flop can be modified to provide

a stable state when both S and R inputs are 1.

• This modified flip-flop is

called a JK flip-flop,

shown on the right.
- The “JK” is in honor of

Jack Kilby.

JK Flip-flop

86

 On the right, we see

how an SR flip-flop can

be modified to create a

JK flip-flop.

 The truth table

indicates that the flip-

flop is stable for all

inputs.

 When J and K are

both 1, Q(t+1) = ¬Q(t)

3.6 Sequential Circuits

87

An Example

 Let’s say a JK flip-flop is rising-edge triggered

 At t0, Q(t) = 0. What will be the changes of the value of

Q over time?
Time

• Any time other than

the rising edge won’t

trigger this JK flip-flop

to change its state

88

 Another modification of the SR flip-flop is the D

flip-flop, shown below with its truth table.

 You will notice that the output of the flip-flop

remains the same during subsequent clock

pulses. The output changes only when the value

of D changes.

D Flip-flop

89

 The D flip-flop is the fundamental circuit of

computer memory.

 D flip-flop and its truth table are
illustrated as below.

D Flip-flop

90

 Sequential circuits are used anytime that we

need to design a “stateful” application.

 A stateful application is one where the next state of the

machine depends on the current state of the machine

and the input.

 A stateful application requires both combinational

and sequential logic.

 The following slides provide several examples of

circuits that fall into this category.

Can you think of
others?

3.6 Sequential Circuits

91

 This illustration shows a

4-bit register consisting

of D flip-flops. You will

usually see its block

diagram (below) instead.

A larger memory configuration
is shown on the next slide.

3.6 Sequential Circuits

92

3.6 4X3 Memory

Read the
content
from the
memory

(0,0); (0,1); (1,0); (1,1);

Choose a word, Wordi

(0<=i<=3)

Write
the
content
into the
memory

93

 A binary counter is

another example of a

sequential circuit.

 The low-order bit is

complemented at

each clock pulse.

 Whenever it changes

from 0 to 1, the next

bit is complemented,

and so on through the

other flip-flops.

3.6 Sequential Circuits

94
Synchronous MOD-16 counter

 Digital designers rely on specialized software

to create efficient circuits.

 Thus, software is an enabler for the
construction of better hardware.

 Of course, software is in reality a collection of

algorithms that could just as well be

implemented in hardware.

 Recall the Principle of Equivalence of
Hardware and Software.

3.7 Designing Circuits

95

 When we need to implement a simple, specialized

algorithm and its execution speed must be as fast

as possible, a hardware solution is often preferred.

 This is the idea behind embedded systems, which

are small special-purpose computers that we find in

many everyday things.

 Embedded systems require special programming

that demands an understanding of the operation of

digital circuits, the basics of which you have

learned in this chapter.

Designing Circuits

96

 Computers are implementations of Boolean

logic.

 Boolean functions are completely described by

truth tables.

 Logic gates are small circuits that implement

Boolean operators.

 The basic gates are AND, OR, and NOT.

 The XOR gate is very useful in parity
checkers and adders.

 The “universal gates” are NOR and NAND.

Chapter 3 Conclusion

97

 Computer circuits consist of combinational logic

circuits and sequential logic circuits.

 Combinational circuits produce outputs almost

immediately when their inputs change.

 Sequential circuits require clocks to control

their changes of state.

 The basic sequential circuit unit is the flip-flop:

The behaviors of the SR, JK, and D flip-flops

are the most important to know.

Chapter 3 Conclusion

98

End of Chapter 3

99

