Chapter 3 – Boolean Algebra and Digital Logic

CS 271 Computer Architecture Purdue University Fort Wayne

Objectives

- □ Understand the relationship between Boolean logic and digital computer circuits.
- \Box Learn how to design simple logic circuits.
- \Box Understand how digital circuits work together to form complex computer systems.

Introduction

- \Box In the latter 19th century, George Boole suggested that *logical thought could be represented through mathematical equations*.
- Boolean algebra is everywhere
- [https://www.google.com/doodles/george-booles-](https://www.google.com/doodles/george-booles-200th-birthday)200th-birthday

Application of Boolean Algebra

- \square Digital circuit
- □ Google search
- □ Database (SQL)
- \square Programming

……

An Example on Programming

while (((A && B) || (A && !B)) || !A) $\big\{$ // do something }

3.2 Boolean Algebra

- \Box Boolean algebra is a mathematical system for manipulating variables that can have one of two values.
	- In formal logic, these values are "true" and "false"
	- In digital systems, these values are "on"/"off," "high"/"low," or "1"/"0".
	- So, it is perfect for binary number systems
- \Box Boolean expressions are created to operate Boolean variables.
	- Common Boolean operators include AND, OR, and NOT.

Boolean Algebra

- \Box The function of Boolean operator can be completely described using a *Truth Table*.
- \Box The truth tables of the Boolean operators AND and OR are shown on the right.
- \Box The AND operator is also known as the *Boolean product "."*. The OR operator is the *Boolean sum "+"*.

X OR Y \mathbf{X} Y $X+Y$ \overline{O} Ω Ω \overline{O} $\vert 1 \vert$ $\mathbf{1}$ $\mathbf 1$ $\overline{0}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$

Boolean NOT

- \Box The truth table of the Boolean NOT operator is shown on the right.
- \Box The NOT operation is most often designated by an **overbar** "^{-"}
	- Some books use the prime mark $(')$ or the "elbow" $($), for instead.

Boolean Function

□ A Boolean function has:

- At least one Boolean variable,
- At least one Boolean operator, and
- At least one input from the set of $\{0,1\}$.
- \Box It produces an output that is a member of the set $\{0,1\}$ – Either 0 or 1.

Now you know why the binary numbering system is so handy for digital systems.

Boolean Algebra

 \Box Let's look at a truth table for the following Boolean function shown on the right. :

 $F(x, y, z) = x\overline{z} + y$

 \Box To valuate the Boolean function easier, the truth table contains a extra columns (shaded) to hold the evaluations of partial function.

$$
F(x, y, z) = x\overline{z} + y
$$

$$
\begin{array}{|c|c|c|c|c|}\hline x&y&z&\overline{z}&x\overline{z}&x\overline{z}+y\\ \hline 0&0&0&1&0&0\\ 0&0&1&0&0&0\\ 0&1&0&1&0&0&1\\ 1&0&0&1&0&0&1\\ 1&1&0&1&0&0&0\\ 1&1&1&0&0&1&1\\ \hline \end{array}
$$

Rules Of Precedence

- Arithmetic has its rules of precedence
	- Like arithmetic, Boolean operations follow the rules of precedence (priority):
	- NOT operator > AND operator > OR operator .
- \Box This explains why we chose the shaded partial function in that order in the table.

 $F(x, y, z) = x\overline{z}+y$

Rules Of Precedence

Use Boolean Algebra in Circuit Design

- \Box Digital circuit designer always like achieve the following goals:
	- *Cheaper* to produce
	- Consume *less power*
	- run *faster*
- \Box How to do it? -- We know that:
	- Computers contain circuits that implement Boolean functions \rightarrow Boolean functions can express circuits
	- If we can simplify a Boolean function, that express a circuit, we can archive the above goals
- □ We always can reduce a Boolean function to its *simplest* form by using a number of Boolean laws can help us do so. 12

Boolean Algebra Laws

- Most Boolean algebra laws have either an *AND (product)* form or an *OR (sum)* form. We give the laws with both forms.
	- Since the laws are always true, so X (and Y) could be either 0 or 1

Boolean Algebra Laws ('Cont)

 \Box The second group of Boolean laws should be familiar to you from your study of algebra:

Boolean Algebra Laws ('Cont)

- \Box The last group of Boolean laws are perhaps the most useful.
	- If you have studied set theory or formal logic, these laws should be familiar to you.

DeMorgan's law

- \Box DeMorgan's law provides an easy way of finding the negation (complement) of a Boolean function.
- \Box DeMorgan's law states:

$$
(xy) = \overline{x} + \overline{y} \quad \text{and} \quad (x+y)
$$

 \square Example

More Examples?

- I **will** come to school tomorrow if
	- (**A**) my car is working, **and**
	- (**B**) it won't be snowing
- I **won't** come to school tomorrow if =
	- (**A**) my car **is not** working, **or**
	- (**B**) it **will** snowing

DeMorgan's Law

- D DeMorgan's law can be extended to any number of variables.
	- Replace each variable by its negation (complement)
	- Change all ANDs to ORs and all ORs to ANDs.
- \Box Let's say F (X, Y, Z) is the following, what is \overline{F} ?

$$
F(X, Y, Z) = (XY) + (XY) + (XZ)
$$

Simplify Boolean function

 \Box Let's use Boolean laws to simplify:

 $F(X, Y, Z) = (X+Y) (X+Y) (XZ)$ as follows:

Logic simplification steps

- Apply De Morgan's theorems
- \square Expanding out parenthesis
- \square Find the common factors
- □ Popular rules used:
	- $X+XY=X$ $X+X=X$, $XX=X$ $XY+XY=X$ $X+0=X$, $X+1=1$ $X+XY=X+Y$ $X0=0$ $X1=X$

PURDUE Example (1) **FORT WAYNE**

WXYZ W+X+Y+Z ■ Apply De Morgan's theorem

(A+B+C)D

AB+CD+EF

 $\overline{\mathsf{AB}(C+BD)+AB}$ C

PURDUE Example (3) **FORT WAYNE**

■ ABC+ABC+ABC+ABC+ABC

$\overline{AB+AC}$ + \overline{ABC}

$A\overline{C}+A\overline{B}C+ABCD+AB\overline{D}$

PURDUE Example (6) **FORT WAYNE**

$\overline{A+B+C}$ $(\overline{B}+C)(\overline{B}+C)(A+\overline{B})$

An Example on Programming

while (((A && B) || (A && !B)) || !A) $\big\{$ // do something } **=** while (1) $\big\{$ // do something

}

Boolean Algebra

- \Box Through our exercises in simplifying Boolean expressions, we see that there are 1+ ways of stating the same Boolean expression.
	- These "synonymous" forms are *logically equivalent.*
	- Logically equivalent expressions could produce confusions

 $(X+Y)$ $(X+\overline{Y})$ $(X\overline{Z})$ =XZ

 \Box In order to eliminate the confusion, designers express Boolean express in unified and *standardized* form, called *canonical form*.

Boolean Algebra

- \Box There are two canonical forms for Boolean expressions: sum-of-products and product-of-sums.
	- Boolean product $(x) \rightarrow AND \rightarrow$ logical conjunction operator
	- Boolean sum $(+) \rightarrow$ OR \rightarrow logical conjunction operator
- In the *sum-of-products form*, ANDed variables are *ORed together*.

For example: $F(x, y, z) = xy + xz + yz$

- In the *product-of-sums form*, ORed variables are *ANDed together*:
	- For example: $F(x, y, z) = (x+y) (x+z) (y+z)$

Minterm and Maxterm

- Some books uses *sum-of-minterms form* and *product-of-maxterms form*
	- **A** *minterm* is a logical expression of n variables that employs only the complement operator and the product operator.
		- For example, **abc, ab'c** and **abc'** are 3 minterms for a Boolean function of the three variables a, b, and c.
	- **A** *maxterm* is a logical expression of n variables that employs only the complement operator and the sum operator.

Create Canonical Form Via Truth Table

- \Box It is easy to convert a function to sum-of-products form from its truth table.
- \Box We only interested in the production of the inputs which yields TRUE (=1).
	- We first *highlight* the lines that result in 1.
	- Then, we *group* them together with OR.

$$
F(x, y, z) = x\overline{z} + y
$$

Create Canonical Form Via Truth Table ('Cont)

Exercise

Convert ABC+A'BC+AB'C+A'B'C+ABC' to its simplest form

```
ABC+A'BC+AB'C+A'B'C+ABC' = BC(A+A') + B'C(A+A') + ABC'= BC1 + B'C1 + ABC'= C(B+B') + ABC'= C + ABC'= C + AB
```
Exercise

\Box Convert AB + C to the sum-of-products form

3.3 Logic Gates

- □ We've seen Boolean functions in abstract terms.
- □ You may still ask:
	- *How could Boolean function be used in computer?*
- \Box In reality, Boolean functions are implemented as digital circuits, which called *Logic Gates*.
- \Box A logic gate is an electronic device that produces a result based on input values.
	- A logic gate may contain multiple transistors, but, we think them as one integrated unit.
	- **Integrated circuits** (IC) contain collections of gates, for a particular purpose.

AND, OR, and NOT Gates

□ Three simplest gates are the AND, OR, and NOT gates. "inversion bubble"

 \Box Their symbol and their truth tables are listed above.

NAND and NOR Gates

 $\mathbf{1}$

 $\mathbf{1}$

 \overline{O}

 $\mathbf{1}$

 $\overline{0}$

 Ω

- □ NAND and NOR are two additional gates.
	- **Their symbols and** truth tables are shown on the right.
- \Box NAND = NOT AND
- \Box NOR = NOT OR

 \mathbf{X}

Y.

 $\overline{XY} = \overline{X+Y}$
The Application of NAND and NOR Gates

- □ NAND and NOR are known as *universal gates! – gates of all gates*
	- They are inexpensive to produce
- □ More important: Any Boolean function can be constructed using only NAND or only NOR gates.

Multiple Inputs and Outputs of Gates

- \Box The gates could have multiple inputs and/or multiple outputs.
	- The second output can be provided as the complement of the first output.
	- We'll see more integrated circuits, which have multiple inputs/outputs.

XOR Gates

- Another very useful gate is the *Exclusive OR* (XOR) gate.
- \Box The output of the XOR operation is true (1) only when the values of inputs are different.

The symbol for XOR is \bigoplus

Parity generator / checker

- \Box Electrical noise in the transmission of binary information can cause errors
- \Box Parity can detect these types of errors
- \Box Parity systems
	- **Odd parity**
	- \blacksquare Even parity

 \Box Add a bit to the binary information

Even parity check

\square Even parity check

- \Box Example: input: $A(7...0)$, Output: even_parity bit
	- If there are even numbers of 1 in A, even parity = $'0'$,
	- If there are odd numbers of 1 in A, even_parity = $'1'$
	- e.g., $A = "10100001",$
		- even parity = $'1'$

$$
A = "10100011",
$$

even parity = $'0'$

Odd parity check

- Example: input: A(7…0), Output: odd_parity bit
	- If there are odd numbers of 1 in A, odd_parity = $'0'$,
	- If there are even numbers of 1 in A, odd_parity = $'1'$
	- e.g., $A = "10100001",$

odd parity $= '0'$

 $A = "10100011",$

 odd parity = $'1'$

Odd-parity generator/checker system

Error detection

- \Box Transmitting end: The parity generator creates the parity bit.
- \Box Receiving end: The parity checker determines if the parity is correct.
- \Box e.g., odd-parity check of 8-bit data
	- Data send: 10111101 + 1
	- Data received: 101011011

odd-parity check: The number of 1 is even *→ error*

Discussion point

- □ What are disadvantages of even parity (or odd parity) check to detect transmission errors? Consider the following case:
	- **Protocol: 8-bit plus one even parity bit**
	- Information sent: $11011100 + 1$
	- Information received: $10010100 + 1$
- \square The parity generator/checker system detects only errors that occur to 1 bit.

Parity check using XOR

- *N-*1 XOR gates can be cascaded to form a circuit with *N* inputs and a single output
	- *even-parity circuit.*
	- Example: *N=*8, Inputs=10111101, *even-parity output*

 $= ((1\oplus0)\oplus(1\oplus1))\oplus((1\oplus1)\oplus(0\oplus1))=0$

- Odd-parity check circuit: *even-parity check* $circuit \rightarrow Inverted \rightarrow Odd-parity check$
	- Example: *N=*8, Inputs=10111101, odd*-parity output*

 $=NOT(((1\oplus 0)\oplus (1\oplus 1))\oplus ((1\oplus 1)\oplus (0\oplus 1)))=1$

Binary comparators

A one-bit comparator is the same as the XOR

◆ A *n-*bit comparator determines if two *n-*bit signal vectors are equal:

EQ(X[1:*n*],Y[1:*n*])=(X1=Y1)(X2=Y2)….(X*n=*Y*n*)

Two Types of Logic Circuits

□ Combinational Logic Circuit *(CLC)*

 Good at designing computational components in the CPU, such as ALU

Sequential Logic Circuit (*SLC*)

 Good at designing memory components, such as registers and memory

Logic Gates

 \Box We use the combination of gates to implement Boolean functions.

 \Box The circuit below implements the Boolean function:

$$
F(X,Y,Z) = X+\overline{Y}Z
$$

3.5 Combinational **Circuits**

 \Box The circuit implements the Boolean function:

$F(X, Y, Z) = X+YZ$

 \Box The major characteristics of this kind of circuits:

- **The circuit** produces an output almost immediately after the inputs are given.
- This kind of circuits are called *combinational logic circuit (CLC)*.
	- In a later section, we will explore circuits where this is not the case.

Simplify *CLC via* Boolean Algebra

\Box As I have mentioned previously:

- The simpler that we can express a Boolean function, the smaller the circuit will be constructed.
- Simpler circuits are *cheaper* > consume *less* $power \rightarrow run faster$ than complex circuits.
- □ We always want to reduce a Boolean function to its *simplest* form.
- \Box It is important to simplify combinational logic circuit via Boolean algebra laws

Steps to Simplify a Complex Circuit

- \Box From this example, we know that the basic steps to simplify a complex circuit is the following:
	- Step1: Express a logical circuit into a Boolean expression
	- Step2: Simplify the Boolean expression as much as possible
	- Step3: Re-express the simplified expression back to a circuit.

\square Simplify the following circuit

■ Step1: Express a logical circuit into a Boolean expression

■ Step2: Simplify the Boolean expression as much as possible

```
AB + BC(B + C)Distributing terms
AB + BBC + BCCApplying identity AA = Ato 2nd and 3rd terms
 AB + BC + BCApplying identity A + A = A<br>to 2nd and 3rd terms
    AB + BCFactoring B out of terms
   B(A + C)
```
■ Step3: Re-express the simplified expression back to a circuit

Obviously, the simplified circuit is much **simpler** than the original one

Combinational Circuits: *Half Adder*

- □ Combinational logic circuits can be used to create many useful devices.
- *Half Adder*: Compute the sum of two bits.
- \Box Let's gain some insight of how to construct a half adder by looking at its truth table on the right.

Combinational Circuits: *Half Adder* ('Cont)

- \Box It consists two gates:
	- **a XOR gate -- the sum bit**
	- a AND gate -- the carry bit

Combinational Circuits: *Full Adder*

- \Box We can extend the half adder to a full adder, which includes an additional carry bit (Carry In)
- \Box The truth table for a full adder is shown on the right.

Half Adder \rightarrow Full Adder ?

 \Box How can we extend the half adder to a full adder?

 \Box Hint: First calculate X + Y by a half adder, then the sum adds the carry in bit, then…… $\frac{1}{62}$

The Full Adder

Ripple-carry Adder

- \Box Just as we combined half adders to construct a full adder, full adders can be connected in series.
- \Box The carry bit "ripples" from one adder to the next. This configuration is called a *ripple-carry adder*.

This is the full adder for two 16 bits!

Decoder

- \Box Decoder is another important combinational circuit.
- \Box It is used to select a memory location according a address in binary form
	- Application: given a memory address \rightarrow Obtain its memory content.
- Address decoder with *n inputs* can select one out of <u>2º locations</u>.

Decoder

A 2-to-4 Decoder

 \Box This is a 2-to-4 decoder :

74138 as a memory address decoder

Multiplexer

- A multiplexer works just the opposite to a decoder.
- \Box It selects a single value from multiple inputs.
- The chosen input for output is determined by the value of the multiplexer's control lines.
- □ To select from *n* inputs, *log 2 n* control lines are required.

A four-line multiplexer

What is the logic equation for the output $Y = ?$

Combinational Circuits

 \Box This is a 4-to-1 multiplexer.

which input is transferred to the output?

A Simple Two-Bit ALU

3.6 Sequential Logic Circuits (*SLC*)

- \Box Combinational logic circuits are perfect for those applications when a Boolean function be immediately evaluated, given the current inputs.
	- Examples: multiplexer, ripple-carry adder, shifter, etc
- \Box However, sometimes, we need a kind of circuits that change value by considering the current inputs and its current state.
	- **Memory** is such an example that requires to remember the current state
	- The circuits need to "*remember*" their states.
	- *Sequential logic circuits (SLC)* provide this functionality.
How to "*remember*"?

 \Box Think about the states in your own life-time

- 1 years old, blabla...
- 2 years old, blabla...
- 3 years old, blabla...

Essential Component of Sequential Circuits: Clocks

- \Box As the name implies, sequential logic circuits require a means by which events can be sequenced.
- \Box The change of states is triggered by the clock.
	- The "*clock*" is *a special circuit* that sends electrical pulses to a *sequential logic circuit*.
- \Box Clocks produce electrical waveforms constantly, such as the one shown below.

When Change Its State?

- State changes occur in sequential circuits, *only when* the clock ticks.
- *A sequential logic circuits could* changes it state
	- Either, at the *rising*/*falling edge* of the clock pulse ,
	- Or, when the clock pulse reaches its *highest/lowest level*.

Edge-triggered Or Level-triggered?

- \Box SLC that changes its state at the rising edge, or the falling edge of the clock pulse is called *Edgetriggered SLC.*
- \Box SLC that changes its state when the clock voltage reaches to its highest or lowest level are called *Level-triggered SLC.*

Latch And Flip-flop

- \Box latch and flip-flop are two kinds of SLCs, which are used to construct memory
	- A latch is *level-triggered*
		- A flip-flop is *edge-triggered*
- \Box Which one depends on the length of the clock pulse?
	- Latch, or
	- flip-flop?

Essential Component Of Sequential Circuits: *Feedback*

- \Box The most important design mechanism of SLC is *Feedback*
	- **Feedback** can retain the state of sequential circuits
- \Box Feedback in digital circuits occurs when an output is *looped back* as an input.
- \Box A simple example of this concept is shown below.
	- If Q is 0 it will always be 0, if it is 1, it will always be 1. --- *The motivation of Memory!*

SR Flip-flop

- \Box You can see how feedback works by examining the most basic sequential logic components, the **SR flip-flop***.*
	- The "SR" stands for *set/reset*.
- \Box The internals of an SR flip-flop are shown below, along with its block diagram. **Clock Driven**

Behavior Of An SR Flip-flop

- \Box The behavior of an SR flip-flop is illustrated in the following truth table.
	- Let's denote Q(t) as the value of the output at time *t*, and
	- Denote Q(t+1) is the value of Q at time *t+1*.

SR Flip-flop Truth Table

- \Box We consider Q(t), its current output, as the third input for SR flipflop, besides S and R*.*
- \Box The truth table for this circuit, as shown on the right.
- \Box When both S and R are 1, the SR flip-flop is in forbidden state

forbidden state

Clocked SR Flip-flop

85

JK Flip-flop

- \Box One limitation of SR flip-flop is that, when S and R are both 1, the output is *undefined*.
	- This is not nice because it wastes a state
- \Box Therefore, SR flip-flop can be modified to provide a stable state when both S and R inputs are 1.
- This modified flip-flop is called a JK flip-flop, shown on the right.
	- The "JK" is in honor of Jack Kilby.

3.6 Sequential Circuits

- \Box On the right, we see how an SR flip-flop can be modified to create a JK flip-flop.
- \Box The truth table indicates that the flipflop is stable for all inputs.
	- When J and K are both 1, $Q(t+1) = \neg Q(t)$

An Example

- □ Let's say a JK flip-flop is **rising-edge** triggered
- At t0, $Q(t) = 0$. What will be the changes of the value of Q over time?

the rising edge **won't** trigger this JK flip-flop to change its state

D Flip-flop

- \Box Another modification of the SR flip-flop is the D flip-flop, shown below with its truth table.
- \Box You will notice that the output of the flip-flop remains the same during subsequent clock pulses. The output changes only when the value of D changes.

D Flip-flop

- \Box The D flip-flop is the fundamental circuit of computer memory.
	- D flip-flop and its truth table are illustrated as below.

3.6 Sequential Circuits

- \Box Sequential circuits are used anytime that we need to design a "stateful" application.
	- A stateful application is one where the next state of the machine depends on the current state of the machine and the input.
- \Box A stateful application requires both combinational and sequential logic.
- The following slides provide several examples of circuits that fall into this category.

Can you think of others?

3.6 Sequential Circuits

 This illustration shows a 4-bit register consisting of D flip-flops. You will usually see its block diagram (below) instead.

A larger memory configuration is shown on the next slide.

3.6 4X3 Memory

3.6 Sequential Circuits

- \Box A binary counter is another example of a sequential circuit.
- \Box The low-order bit is complemented at each clock pulse.
- □ Whenever it changes from 0 to 1, the next bit is complemented, and so on through the other flip-flops.

⁹⁴ Synchronous MOD-16 counter

3.7 Designing Circuits

- \Box Digital designers rely on specialized software to create efficient circuits.
	- Thus, software is an enabler for the construction of better hardware.
- \Box Of course, software is in reality a collection of algorithms that could just as well be implemented in hardware.
	- Recall the Principle of Equivalence of Hardware and Software.

Designing Circuits

- \Box When we need to implement a simple, specialized algorithm and its execution speed must be as fast as possible, a hardware solution is often preferred.
- □ This is the idea behind *embedded systems*, which are small special-purpose computers that we find in many everyday things.
- \Box Embedded systems require special programming that demands an understanding of the operation of digital circuits, the basics of which you have learned in this chapter.

Chapter 3 Conclusion

- □ Computers are implementations of Boolean logic.
- Boolean functions are completely described by truth tables.
- Logic gates are small circuits that implement Boolean operators.
- The basic gates are AND, OR, and NOT.
	- **The XOR gate is very useful in parity** checkers and adders.
- □ The "universal gates" are NOR and NAND.

Chapter 3 Conclusion

- \Box Computer circuits consist of combinational logic circuits and sequential logic circuits.
- □ Combinational circuits produce outputs almost immediately when their inputs change.
- □ Sequential circuits require clocks to control their changes of state.
- \Box The basic sequential circuit unit is the flip-flop: The behaviors of the SR, JK, and D flip-flops are the most important to know.

End of Chapter 3