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Chapter 2 Objectives

 Understand the fundamentals of numerical data 

representation and manipulation in computer systems.

 Master the skill of converting between different numeric-

radix systems.

 Understand how errors can occur in computations 

because of overflow and truncation.

 Understand the fundamental concepts of floating-point 

representation.

 Gain familiarity with the most popular character codes.



Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer



2.1 Introduction
 A bit is the most basic unit of information in a computer.

 It is a state of either “on” or “off”, “high” or 
“low” voltage in a digital circuit.

 In a computer, a bit could be either “1” or “0”.

 A byte is a group of 8 bits.

 a byte is the smallest possible unit of storage 
in computer systems

 A group of 4 bits is called a nibble.

 A byte consists of 2 nibbles: 

 The “high-order” nibble and the “low-order” nibble.



 A word is a contiguous group of bytes.

 Words can be any number of bits or bytes.

 According to different computer systems, 
the size of word could be 2 bytes (16 bits), 
4 bytes (32 bits), or 8 bytes (64 bits) bits.

2.1 Introduction



2.1 Introduction



Byte or Word Addressable

 A computer allows either a byte or a word to be 
addressable

 Addressable: a particular unit of storage can 
be retrieved by CPU, according to its 
location in memory. 

 A byte is the smallest possible addressable
unit of storage in a byte-addressable
computer

 A word is the smallest addressable unit of 
storage in a word-addressable computer 



2.2 Positional Numbering 
Systems

 Bytes store numbers use the position of each bit 

to represent a power of 2 (radix of 2).

 The binary system is also called the base-2 
system.

 Our decimal system is the base-10 system, 

because the position of each number 

represents a power of 10 (radix of 2).

 When the radix of a number is other than 10, the 

base is denoted as a subscript.  

 Sometimes, the subscript 10 is added for 
emphasis



 Let’s first look at numbers in base-10 number 

system

 The decimal number 94710 (base-10) is:

 The decimal number 5836.4710 (base-10) is:

5836.4710 = 5  103 + 8  102 + 3  101 + 6 

 100 + 4  10-1 + 7  10-2

94710 = 9  102 + 4  101 + 7  100

2.2 Positional Numbering 
Systems



 Then, look at numbers in base-2 number 

system

 The binary number 110012 (base-2) is:

 110012 = 2510

1  24 + 1  23 + 0  22 + 0  21 + 1  20

= 16 + 8 + 0 + 0 + 1 = 2510

2.2 Positional Numbering 
Systems



Practice

 (01111101)2 = ?

 (123)8 = ?

 (123)3 = ?

Any problem??



 Because binary numbers are the basis for all 

data representation in computer systems 

 It is important that you become proficient with 

binary system.

 Your knowledge of the binary numbering 

system will help you understand the 

operations of all computer components

 As well as the instruction set of computer.

Why Do I Have To Learn And 
Convert Binary Numbers?



 How can any integer (base-10 number) be converted 

into any radix system?

 There are two methods of conversion: 

 The Subtraction (-) method, and 

 The Division (/) remainder method.

 Let’s use the subtraction method to convert 19010 to 

X3.

2.3 Converting Between Bases



 https://scratch.mit.edu/projects/26329434/

https://scratch.mit.edu/projects/26329434/


 Converting the decimal number 

19010 to X3.

 Let’s try different integers 
i=3n

 35 = 243 > 190 

 The largest power of 3 that 
we need is 34 = 81 <190, 
and  81  2 = 162.

 Write down the 2 and 
subtract 162 from 190, get 
the remainder 28.

2.3 Converting Between Bases: 

Subtraction



 Converting 19010 to X3...

 The next power of 3 is           
33 = 27 < 28, so we 
subtract 27 and write 
down the numeral 1 as 
our result. 

 The next power of 3 is 32

= 9 > 1, too large, so we 
skip 32

2.3 Converting Between Bases:

Subtraction



 Converting 19010 to X3...

 31 = 3>1. too large, so 
we skip 31

 The last power of 3 = 30

= 1, is our last choice, 
and it gives us a 
difference of 0.

 Our result, reading from 
top to bottom is:

19010 = 210013

2.3 Converting Between Bases:
Subtraction

The subtraction method is more intuitive, but 

cumbersome.  



 Let’s try another method of conversion: 

Division.

 The idea is that:

 Successive division by a base is equivalent to 

successive subtraction by powers of the base!

 Let’s use the division method to convert 19010 to 

X3, again.

2.3 Converting Between Bases:

Division



 Converting 19010 to base 3...

 First we take the number 
that we wish to convert 
and divide it by the radix 
in which we would like to 
convert to.

 In this case, 190/3  the 
quotient is 63, and the 
remainder is 1.

2.3 Converting Between Bases



 Converting 19010 to base 

3...

 63 is evenly divisible 
by 3.

 The quotient is 21, 
the remainder is 0.

2.3 Converting Between Bases



 Converting 19010 to base 3...

 Continue in this way until 
the quotient is 0.

 In the final calculation, we 
note that 3 divides 2 zero 
times with a remainder of 
2.

 Our result, reading from 
bottom to top is:

19010 = 210013

2.3 Converting Between Bases

It is mechanical but easier! 



Exercise

 45810=________2

 65210=________2

 45810=________3

 65210=________5

 Once you get the result, please verify your result by 

converting back!

 Don’t user calculator!



 Fractional numbers can be approximated in all 

base systems, too.

 Unlike integer values, fractional numbers do not

necessarily have exact representations under all 

radices.

 The quantity ½  is exactly representable in the binary 

and decimal systems, but is not in the base 3 

numbering system.

2.3 Converting Fractional 

Numbers



 Fractional decimal numbers have non-zero 

digits on the right of the decimal point.

 Fractional values of other radix systems have 

nonzero digits on the right of the radix point.

 Numerals on the right of a radix point represent 

negative powers of the radix. For example

0.4710 =  4  10-1 + 7  10-2

0.112 =  1  2-1 + 1  2-2

=  ½ + ¼

=  0.5 + 0.25 

=  0.7510

2.3 Converting Fractional Numbers



 Like the integer conversions, you can use either 

of the following two methods: 

 The Subtraction (-) method, or 

 The multiplication (x) method.

 The subtraction method for fractions is same as 

the method for integer 

 Subtract negative powers of the radix.

 Always start with the largest value --- first, n-1, 

where n is the radix.

2.3 Converting Fractional Numbers



 Using the subtraction method 

to convert the decimal 0.812510

to X2.

 Our result, reading from 
top to bottom is:

0.812510= 0.11012

 Subtraction stops when 
the remainder becomes 0

 Of course, this method 
works with any base, not 
just binary.

2.3 Converting Fractional 

Numbers

0.125



 Using the multiplication
method to convert the 

decimal 0.812510 to X2, we 

multiply by the radix 2.

 The first product 
carries into the 
units place.

2.3 Converting Fractional 

Numbers



 Converting 0.812510 to X2. . 

– Ignoring the value in the 
units place at each step, 
continue multiplying each 
fractional part by the 
radix.

2.3 Converting Fractional 

Numbers



 Converting 0.812510 to X2 . .

 You are finished when the 
product is 0, or until you 
have reached the desired 
number of binary places.

 Our result, reading from top 
to bottom is:

0.812510 = 0.11012

 Multiplication stops when the 
fractional part becomes 0

 This method also works with 
any base. Just use the target 
radix as the multiplier.

2.3 Converting Fractional 

Numbers



 Binary numbering (base 2) system is the most 

important radix system in computers.

 But, it is difficult to read long binary strings

 For example:    110101000110112 = 

1359510

 For compactness, binary numbers are usually 

expressed as hexadecimal (base-16)

numbers.

2.3 Binary and Hexadecimal 
Number



 The hexadecimal numbering system uses the 

numerals 0,.. ,9, A,…,F

 1210 = C16

 2610 = 1A16

 It is easy to convert between base 16 and base 

2, because 16 = 24.

 Thus, to convert from binary to hexadecimal, 
 Group the binary digits into groups of 4 bits --- a 

nibble.

2.3 Converting Between Bases



Converting Binary to 
Hexadecimal

 Each hexadecimal digit corresponds to 4 binary bits.

 Example: Translate the binary integer 
000101101010011110010100 to  hexadecimal



Converting Hexadecimal to 
Binary 

 Each hexadecimal digit can be 
converted to its 4-bit binary number 
to form the binary equivalent. 



 Using groups of hextets, the binary number 

1359510 (= 110101000110112) in 

hexadecimal is:

 Octal (base 8) values are derived from binary by 

using groups of three bits (8 = 23):

Octal was useful when a computer used 
six-bit words.

If the number of bits 
is not a multiple of 4, 
pad on the left with 
zeros!

2.3 Converting Between Bases

351B16

324338



Conversion between bases 2 
and 2^n

 Convert from base 2 to base 16

 Convert from base 2 to base 8

1 0 1 1 1 0 0 1 1 0 1 0 1 0 2 =  2 E 6 A 16

2          E              6             A

1 0 1 1 1 0 0 1 1 0 1 0 1 0 2 =  2 7 1 5 2 8
2        7          1          5          2



Converting Hexadecimal to 
Decimal

 Multiply each digit by its corresponding 
power of 16:

Decimal = (d3  163) + (d2  162) + (d1  161) + (d0  160)

di = hexadecimal digit at the ith position

 Examples:
 123416 = (1  163) + (2  162) + (3  161) + (4  160) 

= 466010

 3BA416 = (3  163) + (11 * 162) + (10  161) + (4 
160) =1526810



Exercise

 5816=________10

 1528=________10

 567=________10

 5211=________10

 Once you get the result, please verify your result by 

converting back!

 Don’t user calculator!



Conversion between bases 2^m 
and 2^n

 Convert from base 16 to base 8

 You can use a intermediate radix number

 For example

 Base 16 to Base 2 (binary)

 Base 2 (binary) to Base 8

A9DB316 = 1010 1001 1101  1011  00112 
= 10 101 001 110 110 110 0112 
= 25166638



EXERCISES

 17610 = _______16

 5580110 =_______8

 A616 = _______13

 558 =_______16



Conversion between bases 2 and 
base N

 You must familiar with the 
table on right

 You must familiar with the 
following conversion:
 Converting from bases 2 to 

base 2^n

 Converting between base 2^m
and base 2^n

 Converting from bases 2 to 
base 10

 Converting from bases 10 
(decimal) to base 16 (hex)

hex dec binary
0 0  0000

1 1  0001

2 2  0010

3  3  0011

4 4  0100

5  5  0101

6  6  0110

7  7  0111

8  8  1000

9  9  1001

A  10  1010

B  11  1011

C  12  1100

D  13  1101

E  14  1110

F  15  1111



Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer



Binary addition

 When the sum exceeds 1, carry a 1 
over to the next-more-significant 
column (addition rules)

 0 + 0 = 0  carry 0

 0 + 1 = 1  carry 0

 1 + 0 = 1  carry 0

 1 + 1 = 0  carry 1



Binary subtraction

 Subtraction rules

 0 - 0 = 0  borrow 0

 0 - 1 = 1  borrow 1

 1 - 0 = 1  borrow 0

 1 - 1 = 0  borrow 0



Unsigned number: Addition and 
subtraction

 Exercise: Use unsigned binary to 
compute 

 10010+1010

 10010-1010

 Use 8-bit unsigned numbers to 
calculate 10010 + 10010 + 10010 using 
binary addition



Unsigned number: Overflow

 Possible solution:

 If data is stored in register, you should use longer register, 

which can hold more bits

 In this case, you need a register, which has at least two bytes 

to hold the result



Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer



2.4 Signed Integer 
Representation

 So far, we have presented the conversions only 

involve unsigned numbers  all positive or 0

 To represent signed integers, computer systems 

user the high-order bit to indicate the sign of a 

number.

 The high-order bit is the leftmost bit, which 
also called the “Most Significant Bit” (MSB).

 0  a positive number or 0; 

 1  a negative number or 0.

 The remaining bits contain the value of the number



 In a byte, signed integer representation

 7 bits to represent the value of the number

 1 sign bit.

 There are three ways, where signed binary integers 

may be expressed:  

 Signed magnitude 

 One’s complement

 Two’s complement

2.4 Signed Integer 
Representation



Two's Complement 
Representation

8-bit Binary

value

Unsigned

value

Signed

value

00000000 0 0

00000001 1 +1

00000010 2 +2

. . . . . . . . .

01111110 126 +126

01111111 127 +127

10000000 128 -128

10000001 129 -127

. . . . . . . . .

11111110 254 -2

11111111 255 -1

 Positive numbers

 Signed value = Unsigned value

 Negative numbers

 Signed value = Unsigned value - 2n

 n = number of bits



N-bit two’s complement

 Positive integer

 Set leftmost bit to 0

 Express magnitude in binary in the rightmost 
n-1 bits

 Negative integer

 Represent the magnitude (positive) as above

 Then negate (complement) the result (see 
next slide), and add 1

 The leftmost bit is the sign bit

 0 for positive

 1 for negative

leftmost bit



Negative Integer Representation

 2’s compliment for a negative number -x

1. Represent the positive number x in binary

2. Negate all bits

3. Add 1 to the result

Let n = 6 bits

Represent magnitude  +1410 = 001110

Complement each bit               110001

Add 1                                        +        1

110010

Result  -1410 = 1100102

Check by negating the result

Start with result     -1410 = 110010

Complement each bit        001101

Add 1                                 +        1

001110

As expected, we get  +1410 = 0011102



Another Example

Sum of an integer and its 2's complement must be zero:

00100100 + 11011100 = 00000000 (8-bit sum)  Ignore Carry

starting value 00100100 = +36

step1: reverse the bits (1's complement) 11011011

step 2: add 1 to the value from step 1 +      1

sum = 2's complement representation 11011100 = -36

 Represent -36 in 2’s complement format

 Verification:



Addition and subtraction

 Addition of two’s complement 

numbers

 Add all n bits using binary arithmetic

 Throw away any carry from the leftmost 
bit position

 Do this whether the signs are the same 
or different

 For example: X-Y

 First, negate Y. Then, add to X

 Thus, X-Y= X + (-Y)



Examples of addition

Let n = 6 bits

Add 5 and 6 to obtain 11

+510 =  000101

+610 =  000110

+1110 =  001011

Let n = 6 bits

-14 + 9 = –5

-1410 =  110010

+910 =  001001

-510 =  111011

Let n = 6 bits

-14 - 9 = -23 

-1410 =  110010

-910 =  110111

-2310 =  101001

Check magnitude of -510

Negate -510 =   111011

Complement       000100

Add 1 +        1

Magnitude: +5 =  000101

OK

Check magnitude of -2310

Negate -2310 =  101001

Complement        010110

Add 1 +        1

Magnitude: +23 = 010111

OK

Verification



Wrap Up

 2’s complement:

 Positive integer  Same

 Negative integer  Complement all 

bits and add 1

 Use two’s complement to compute 

 10010+1010

 -10010+1010

 10010-1010

 -10010-1010

Please first convert decimal to binary



Overflow detection

 X, Y and Z are N-bit 2’s-complement 
numbers and Z2c=X2c+Y2c

 Overflow occurs if X2c+Y2c exceeds the 
maximum value represented by N-bits.

 If the signs of X and Y are different, no 
overflow detected for Z2c=X2c+Y2c.

 In case the signs of X and Y are the 
same, if the sign of X2c+Y2c is opposite, 
overflow detected.
 Case 1: X, Y positive,  Z sign bit =‘1’

 Case 2: X, Y negative, Z sign bit =‘0’



 X2c=(01111010)2c, Y2c=(10001010)2c, 

X2c+Y2c=(00000100)2c  No overflow

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 0

1 0 0 0 0 0 1 0 0

Carry-out 1 ignored

Example



 X2c=(11111010)2c, 
Y2c=(10001010)2c, 

X2c+Y2c=(10000100)2c  No overflow

1 1 1 1 1 0 1 0

1 0 0 0 1 0 1 0

1 1 0 0 0 0 1 0 0

Carry-out 1 ignored

Sign = 1

Example



 X2c=(10011010)2c, Y2c=(10001010)2c, 

X2c+Y2c=(00100100)2c  Overflow detected

1 0 0 1 1 0 1 0

1 0 0 0 1 0 1 0

1 0 0 1 0 0 1 0 0

Carry-out 1

Sign =0

Example



 X2c=(01111010)2c, Y2c=(00001010)2c, 

X2c+Y2c=(10000100)2c  Overflow detected

0 1 1 1 1 0 1 0

0 0 0 0 1 0 1 0

1 0 0 0 0 1 0 0

Sign=1  negative

Example



 X2c=(00111010)2c, Y2c=(00001010)2c, 

X2c+ Y2c=(01000100)2c  No overflow

0 0 1 1 1 0 1 0

0 0 0 0 1 0 1 0

0 1 0 0 0 1 0 0

Sign=0  positive

Example



Programming Example

#include <stdio.h>

int main()

{

int a = 32767;

short b;

printf ("size of int = %ld, size of short = %ld\n", sizeof(int), sizeof(short));   

b = (short)a;    

printf ("a = %d, b = %d\n", a, b);

a ++;

b = (short)a;    

printf ("a = %d, b = %d\n", a, b);

return 0;

}



A Production Issue 
(C Language)

void do_something(short argu)

{

……

}

int main()

{

int db_table_key;

……..

do_something(db_table_key);

…….

}



 In binary system, Multiplication/Division by 2 
very easily using an arithmetic shift operation

 A left arithmetic shift inserts a 0 in for the 
rightmost bit and shifts everything else left one 
bit; in effect, it multiplies by 2

 A right arithmetic shift shifts everything one bit to 
the right, but copies the sign bit; it divides by 2

 Let’s look at the following examples…

2.4 Signed Integer 
Representation



Bit Shifting (Arithmetic & Logical 
shift)

00010111 (decimal +23) LEFT-SHIFT 

= 00101110 (decimal +46)

10010111 (decimal −105) RIGHT-SHIFT 

= 11001011 (decimal −53)

Left arithmetic shift Right arithmetic shift

 To multiply 23 by 4, simply left-shift twice

 To divide 105 by 4, simply right-shift twice



Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer



79

 The two’s complement representation that we have 

just presented deals with signed integer values only.

 Without modification, these formats are not useful in 

scientific or business applications that deal with real 

number values.

 Floating-point representation solves this problem.

2.5 Floating-Point Representation



https://www.youtube.com/watch?v=GlRG9x0JRMc


81

2.5 Floating-Point Representation

 If we are clever programmers, we can perform floating-

point calculations using any integer format.

 This is called floating-point emulation, because floating 

point values aren’t stored as such; we just create 

programs that make it seem as if floating-point values 

are being used.

 Most of today’s computers are equipped with specialized 

hardware that performs floating-point arithmetic with no 

special programming required.



82

 Floating-point numbers allow an arbitrary number of 

decimal places to the right of the decimal point.

 For example: 0.5  0.25 = 0.125

 They are often expressed in scientific notation.

 For example:

0.125 = 1.25  10-1

5,000,000 = 5.0  106

2.5 Floating-Point Representation



83

 Computers use a form of scientific notation for 

floating-point representation 

 Numbers written in scientific notation have three

components:

2.5 Floating-Point Representation



84

 Computer representation of a floating-point number 

consists of three fixed-size fields:

 This is the standard arrangement of these fields.

Note: Although “significand” and “mantissa” do not technically mean the 

same thing, many people use these terms interchangeably.  We use the term 

“significand” to refer to the fractional part of a floating point number.

2.5 Floating-Point Representation



85

 The one-bit sign field is the sign of the stored value.

 The size of the exponent field determines the range of 

values that can be represented.

 The size of the significand determines the precision of 

the representation.

2.5 Floating-Point Representation



86

 We introduce a hypothetical “Simple Model” to 

explain the concepts

 In this model:

 A floating-point number is 14 bits in length

 The exponent field is 5 bits

 The significand field is 8 bits

2.5 Floating-Point Representation



87

 The significand is always preceded by an implied 

binary point.

 Thus, the significand always contains a fractional 

binary value.

 The exponent indicates the power of 2 by which the 

significand is multiplied.

2.5 Floating-Point Representation



88

 Example:

 Express 3210 in the simplified 14-bit floating-
point model.

 We know that 32 is 25.  So in (binary) scientific notation 32 
= 1.0 x 25 = 0.1 x 26. 

 In a moment, we’ll explain why we prefer the 
second notation versus the first.

 Using this information, we put 110 (= 610) in the exponent 
field and 1 in the significand as shown.

2.5 Floating-Point Representation



89

 The illustrations shown at 

the right are all

equivalent 

representations for 32 

using our simplified 

model.

 Not only do these 

synonymous 

representations waste 

space, but they can also 

cause confusion.

2.5 Floating-Point Representation



90

 Another problem with our system is that we have 

made no allowances for negative exponents.  We 

have no way to express 0.5 (=2 -1)!  (Notice that there 

is no sign in the exponent field.)

All of these problems can be fixed with no 

changes to our basic model.

2.5 Floating-Point Representation



91

 To resolve the problem of synonymous forms, we 

establish a rule that the first digit of the significand

must be 1, with no ones to the left of the radix point.  

 This process, called normalization, results in a unique 

pattern for each floating-point number.

 In our simple model, all significands must have 
the form 0.1xxxxxxxx

 For example, 4.5 = 100.1 x 20 = 1.001 x 22 = 
0.1001 x 23.  The last expression is correctly 
normalized.

In our simple instructional model, we use no implied bits.

2.5 Floating-Point Representation



92

 To provide for negative exponents, we will use a 

biased exponent.

 In our case, we have a 5-bit exponent.

 25-1 – 1 = 24-1 = 15  

 Thus will use 15 for our bias: our exponent 
will use excess-15 representation.

 In our model, exponent values less than 15 are 

negative, representing fractional numbers.

2.5 Floating-Point Representation



93

 Example:

 Express 3210 in the revised 14-bit floating-point 
model.

 We know that 32 = 1.0 x 25 = 0.1 x 26.

 To use our excess 15 biased exponent, we add 15 to 6, 

giving 2110 (=101012). 

 So we have:

2.5 Floating-Point Representation



94

 Example:

 Express 0.062510 in the revised 14-bit floating-
point model.

 We know that 0.0625 is 2-4.  So in (binary) scientific 

notation 0.0625 = 1.0 x 2-4 = 0.1 x 2 -3.

 To use our excess 15 biased exponent, we add 15 to -3, 

giving 1210 (=011002). 

2.5 Floating-Point Representation



95

 Example:

 Express -26.62510 in the revised 14-bit floating-
point model.

 We find 26.62510 = 11010.1012.  Normalizing, we have: 

26.62510 = 0.11010101 x 2 5.

 To use our excess 15 biased exponent, we add 15 to 5, 

giving 2010 (=101002). We also need a 1 in the sign bit. 

2.5 Floating-Point Representation



96

 The IEEE has established a standard for floating-

point numbers

 The IEEE-754 single precision floating point 

standard uses an 8-bit exponent (with a bias of 

127) and a 23-bit significand.

 The IEEE-754 double precision standard uses an 

11-bit exponent (with a bias of 1023) and a 52-bit 

significand.

2.5 Floating-Point Representation
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 In both the IEEE single-precision and double-

precision floating-point standard, the significant has 

an implied 1 to the LEFT of the radix point.

 The format for a significand using the IEEE 
format is: 1.xxx…

 For example, 4.5 = .1001 x 23 in IEEE format is 
4.5 = 1.001 x 22.  The 1 is implied, which 
means is does not need to be listed in the 
significand (the significand would include only 
001).

2.5 Floating-Point Representation
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 Example: Express -3.75 as a floating point number 

using IEEE single precision.

 First, let’s normalize according to IEEE rules:

 3.75 = -11.112 = -1.111 x 21

 The bias is 127, so we add 127 + 1 = 128 (this is our 

exponent)

 The first 1 in the significand is implied, so we have:

 Since we have an implied 1 in the significand, this equates to

-(1).1112 x 2 (128 – 127) = -1.1112 x 21 = -11.112 = -3.75. 

(implied)

2.5 Floating-Point Representation



Exercise

 Use IEEE-754 single precision floating 
point standard to find binary 
representation of the following real 
number:

 0.0625

 -26.625



100

 Using the IEEE-754 single precision floating point 

standard: 

 An exponent of 255 indicates a special value.

 If the significand is zero, the value is   infinity.

 If the significand is nonzero, the value is NaN, 
“not a number,” often used to flag an error 
condition.

 Using the double precision standard:

 The “special” exponent value for a double 
precision number is 2047, instead of the 255 
used by the single precision standard.

2.5 Floating-Point Representation



What is zero divided by zero?
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 Both the 14-bit model that we have presented and the 

IEEE-754 floating point standard allow two 

representations for zero.

 Zero is indicated by all zeros in the exponent 
and the significand, but the sign bit can be 
either 0 or 1.

 This is why programmers should avoid testing a 

floating-point value for equality to zero.

 Negative zero does not equal positive zero.

2.5 Floating-Point Representation
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 Floating-point addition and subtraction are done 

using methods analogous to how we perform 

calculations using pencil and paper.

 The first thing that we do is express both operands in 

the same exponential power, then add the numbers, 

preserving the exponent in the sum.

 If the exponent requires adjustment, we do so at the 

end of the calculation.

2.5 Floating-Point Representation
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 Example:

 Find the sum of 1210 and 1.2510 using the 14-bit 
“simple” floating-point model.

 We find 1210 = 0.1100 x 2 4.  And 1.2510 = 0.101 x 2 1 = 

0.000101 x 2 4.

2.5 Floating-Point Representation

• Thus, our sum is 

0.110101 x 24. 



105

 No matter how many bits we use in a floating-point 

representation, our model must be finite.

 The real number system is, of course, infinite, so our 

models can give nothing more than an approximation

of a real value. 

 At some point, every model breaks down, introducing 

errors into our calculations.

 By using a greater number of bits in our model, we 

can reduce these errors, but we can never totally 

eliminate them.

2.5 Floating-Point Representation



Examples

 Use JavaScript Console to compute 
the following:

 1.03 - 0.42

 1.00 - 9*0.1

Avoid float and double if exact 
answers are required!!!



Software Disaster

https://www.youtube.com/watch?v=6OSfl7LMlJQ

https://www.youtube.com/watch?v=6OSfl7LMlJQ
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 Our job becomes one of reducing error, or at least 

being aware of the possible magnitude of error in our 

calculations.

 We must also be aware that errors can compound 

through repetitive arithmetic operations.

 For example, our 14-bit model cannot exactly 

represent the decimal value 128.5.  In binary, it is 9 

bits wide:

10000000.12 = 128.510

2.5 Floating-Point Representation
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 When we try to express 128.510 in our 14-bit model, 

we lose the low-order bit, giving a relative error of:

 If we had a procedure that repetitively added 0.5 to 

128.5, we would have an error of nearly 2% after 

only four iterations.

128.5 - 128

128.5
 0.39%

2.5 Floating-Point Representation



110

 Floating-point errors can be reduced when we use 

operands that are similar in magnitude.

 If we were repetitively adding 0.5 to 128.5, it would 

have been better to iteratively add 0.5 to itself and 

then add 128.5 to this sum.

 In this example, the error was caused by loss of the 

low-order bit.

 Loss of the high-order bit is more problematic.

2.5 Floating-Point Representation
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 Floating-point overflow and underflow can cause 

programs to crash.

 Overflow occurs when there is no room to store the 

high-order bits resulting from a calculation.

 Underflow occurs when a value is too small to store, 

possibly resulting in division by zero.

Experienced programmers know that it’s better for  a 

program to crash than to have it produce incorrect, but 

plausible, results.

2.5 Floating-Point Representation
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 When discussing floating-point numbers, it is important 

to understand the terms range, precision, and

accuracy.

 The range of a numeric integer format is the difference 

between the largest and smallest values that can be 

expressed.

 Accuracy refers to how closely a numeric 

representation approximates a true value.

 The precision of a number indicates how much 

information we have about a value

2.5 Floating-Point Representation
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 Most of the time, greater precision leads to better 

accuracy, but this is not always true.

 For example, 3.1333 is a value of pi that is 
accurate to two digits, but has 5 digits of 
precision.

 There are other problems with floating point numbers.

 Because of truncated bits, you cannot always assume 

that a particular floating point operation is associative or 

distributive.

2.5 Floating-Point Representation
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 This means that we cannot assume:

(a + b) + c = a + (b + c)  or

a*(b + c) = ab + ac

 Moreover, to test a floating point value for equality to some 

other number, it is best to declare a “nearness to x” epsilon 

value.  For example, instead of checking to see if floating point 

x is equal to 2 as follows:

if x = 2 then …

it is better to use:

if (abs(x - 2) < epsilon) then ... 

(assuming we have epsilon defined correctly!)

2.5 Floating-Point Representation



Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer



2.6 Characters in Computer

 You might say: “Well, I know numbers can be 

represented as binary, what about characters?”

 Characters are also represented as 
binary

 However, all characters uses ASCII (/ˈæski/ 
ass-kee), as a character-encoding scheme. 

 ASCII --- American Standard Code for 
Information Interchange



ASCII Code

 It encodes 128 specified characters into 
7-bit binary integers as shown by the 
ASCII chart.

 The characters encoded are numbers 0 to 
9, lowercase letters a to z, uppercase 
letters A to Z, basic punctuation symbols, 
control codes that originated with Teletype 
machines, and a space. 

 For the full ASCII table, see next page



 For example, lowercase j would become 
binary 1101010 (decimal 106) in ASCII.



54 68 65 20 45 6E 64

What do these hexadecimal numbers 
represent?





Is ASCII Enough?

 What about other characters, which is 
not English characters?

 The Unicode will be needed



Unicode

 Unicode is a computing industry standard for the consistent encoding, 
representation, and handling of text expressed in most of the world's 
writing systems. 

 The latest version of Unicode contains a repertoire of more than 
110,000 characters covering 100 scripts and multiple symbol sets. 

 As of June 2014, the most recent version is Unicode 7.0. The standard is 
maintained by the Unicode Consortium.

 The most commonly used Unicode encodings are UTF-8, UTF-16 and 
the now-obsolete UCS-2. 

 UTF-8 uses one byte for any ASCII character, all of which have the same 
code values in both UTF-8 and ASCII encoding, and up to four bytes for 
other characters. 

 UTF-16 extends UCS-2, using one 16-bit unit for the characters that were 
representable in UCS-2 and two 16-bit units (4 × 8 bit) to handle each of 
the additional characters.

 UCS-2 uses a 16-bit code unit (two 8-bit bytes) for each character, but 
cannot encode every character in the current Unicode standard. 

http://www.w3schools.com/charsets/ref_utf_misc_symbols.asp

https://en.wikipedia.org/wiki/Unicode_Consortium
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UCS-2


 Computers store data in the form of bits, bytes, and words 

using the binary numbering system.

 Hexadecimal numbers are formed using four-bit groups 

called nibbles.

 Signed integers can be stored in one’s complement, two’s 

complement, or signed magnitude representation.

 Floating-point numbers are usually coded using the IEEE 

754 floating-point standard.

 Floating-point operations are not necessarily commutative 

or distributive.

 Character data is stored using ASCII, EBCDIC, or Unicode.

Chapter 2 Conclusion



End of Chapter 2


