
Chapter 2 – Data
Representation

CS 271 Computer Architecture

Purdue University Fort Wayne

Chapter 2 Objectives

 Understand the fundamentals of numerical data

representation and manipulation in computer systems.

 Master the skill of converting between different numeric-

radix systems.

 Understand how errors can occur in computations

because of overflow and truncation.

 Understand the fundamental concepts of floating-point

representation.

 Gain familiarity with the most popular character codes.

Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer

2.1 Introduction
 A bit is the most basic unit of information in a computer.

 It is a state of either “on” or “off”, “high” or
“low” voltage in a digital circuit.

 In a computer, a bit could be either “1” or “0”.

 A byte is a group of 8 bits.

 a byte is the smallest possible unit of storage
in computer systems

 A group of 4 bits is called a nibble.

 A byte consists of 2 nibbles:

 The “high-order” nibble and the “low-order” nibble.

 A word is a contiguous group of bytes.

 Words can be any number of bits or bytes.

 According to different computer systems,
the size of word could be 2 bytes (16 bits),
4 bytes (32 bits), or 8 bytes (64 bits) bits.

2.1 Introduction

2.1 Introduction

Byte or Word Addressable

 A computer allows either a byte or a word to be
addressable

 Addressable: a particular unit of storage can
be retrieved by CPU, according to its
location in memory.

 A byte is the smallest possible addressable
unit of storage in a byte-addressable
computer

 A word is the smallest addressable unit of
storage in a word-addressable computer

2.2 Positional Numbering
Systems

 Bytes store numbers use the position of each bit

to represent a power of 2 (radix of 2).

 The binary system is also called the base-2
system.

 Our decimal system is the base-10 system,

because the position of each number

represents a power of 10 (radix of 2).

 When the radix of a number is other than 10, the

base is denoted as a subscript.

 Sometimes, the subscript 10 is added for
emphasis

 Let’s first look at numbers in base-10 number

system

 The decimal number 94710 (base-10) is:

 The decimal number 5836.4710 (base-10) is:

5836.4710 = 5  103 + 8  102 + 3  101 + 6

 100 + 4  10-1 + 7  10-2

94710 = 9  102 + 4  101 + 7  100

2.2 Positional Numbering
Systems

 Then, look at numbers in base-2 number

system

 The binary number 110012 (base-2) is:

 110012 = 2510

1  24 + 1  23 + 0  22 + 0  21 + 1  20

= 16 + 8 + 0 + 0 + 1 = 2510

2.2 Positional Numbering
Systems

Practice

 (01111101)2 = ?

 (123)8 = ?

 (123)3 = ?

Any problem??

 Because binary numbers are the basis for all

data representation in computer systems

 It is important that you become proficient with

binary system.

 Your knowledge of the binary numbering

system will help you understand the

operations of all computer components

 As well as the instruction set of computer.

Why Do I Have To Learn And
Convert Binary Numbers?

 How can any integer (base-10 number) be converted

into any radix system?

 There are two methods of conversion:

 The Subtraction (-) method, and

 The Division (/) remainder method.

 Let’s use the subtraction method to convert 19010 to

X3.

2.3 Converting Between Bases

 https://scratch.mit.edu/projects/26329434/

https://scratch.mit.edu/projects/26329434/

 Converting the decimal number

19010 to X3.

 Let’s try different integers
i=3n

 35 = 243 > 190

 The largest power of 3 that
we need is 34 = 81 <190,
and 81  2 = 162.

 Write down the 2 and
subtract 162 from 190, get
the remainder 28.

2.3 Converting Between Bases:

Subtraction

 Converting 19010 to X3...

 The next power of 3 is
33 = 27 < 28, so we
subtract 27 and write
down the numeral 1 as
our result.

 The next power of 3 is 32

= 9 > 1, too large, so we
skip 32

2.3 Converting Between Bases:

Subtraction

 Converting 19010 to X3...

 31 = 3>1. too large, so
we skip 31

 The last power of 3 = 30

= 1, is our last choice,
and it gives us a
difference of 0.

 Our result, reading from
top to bottom is:

19010 = 210013

2.3 Converting Between Bases:
Subtraction

The subtraction method is more intuitive, but

cumbersome.

 Let’s try another method of conversion:

Division.

 The idea is that:

 Successive division by a base is equivalent to

successive subtraction by powers of the base!

 Let’s use the division method to convert 19010 to

X3, again.

2.3 Converting Between Bases:

Division

 Converting 19010 to base 3...

 First we take the number
that we wish to convert
and divide it by the radix
in which we would like to
convert to.

 In this case, 190/3  the
quotient is 63, and the
remainder is 1.

2.3 Converting Between Bases

 Converting 19010 to base

3...

 63 is evenly divisible
by 3.

 The quotient is 21,
the remainder is 0.

2.3 Converting Between Bases

 Converting 19010 to base 3...

 Continue in this way until
the quotient is 0.

 In the final calculation, we
note that 3 divides 2 zero
times with a remainder of
2.

 Our result, reading from
bottom to top is:

19010 = 210013

2.3 Converting Between Bases

It is mechanical but easier!

Exercise

 45810=________2

 65210=________2

 45810=________3

 65210=________5

 Once you get the result, please verify your result by

converting back!

 Don’t user calculator!

 Fractional numbers can be approximated in all

base systems, too.

 Unlike integer values, fractional numbers do not

necessarily have exact representations under all

radices.

 The quantity ½ is exactly representable in the binary

and decimal systems, but is not in the base 3

numbering system.

2.3 Converting Fractional

Numbers

 Fractional decimal numbers have non-zero

digits on the right of the decimal point.

 Fractional values of other radix systems have

nonzero digits on the right of the radix point.

 Numerals on the right of a radix point represent

negative powers of the radix. For example

0.4710 = 4  10-1 + 7  10-2

0.112 = 1  2-1 + 1  2-2

= ½ + ¼

= 0.5 + 0.25

= 0.7510

2.3 Converting Fractional Numbers

 Like the integer conversions, you can use either

of the following two methods:

 The Subtraction (-) method, or

 The multiplication (x) method.

 The subtraction method for fractions is same as

the method for integer

 Subtract negative powers of the radix.

 Always start with the largest value --- first, n-1,

where n is the radix.

2.3 Converting Fractional Numbers

 Using the subtraction method

to convert the decimal 0.812510

to X2.

 Our result, reading from
top to bottom is:

0.812510= 0.11012

 Subtraction stops when
the remainder becomes 0

 Of course, this method
works with any base, not
just binary.

2.3 Converting Fractional

Numbers

0.125

 Using the multiplication
method to convert the

decimal 0.812510 to X2, we

multiply by the radix 2.

 The first product
carries into the
units place.

2.3 Converting Fractional

Numbers

 Converting 0.812510 to X2. .

– Ignoring the value in the
units place at each step,
continue multiplying each
fractional part by the
radix.

2.3 Converting Fractional

Numbers

 Converting 0.812510 to X2 . .

 You are finished when the
product is 0, or until you
have reached the desired
number of binary places.

 Our result, reading from top
to bottom is:

0.812510 = 0.11012

 Multiplication stops when the
fractional part becomes 0

 This method also works with
any base. Just use the target
radix as the multiplier.

2.3 Converting Fractional

Numbers

 Binary numbering (base 2) system is the most

important radix system in computers.

 But, it is difficult to read long binary strings

 For example: 110101000110112 =

1359510

 For compactness, binary numbers are usually

expressed as hexadecimal (base-16)

numbers.

2.3 Binary and Hexadecimal
Number

 The hexadecimal numbering system uses the

numerals 0,.. ,9, A,…,F

 1210 = C16

 2610 = 1A16

 It is easy to convert between base 16 and base

2, because 16 = 24.

 Thus, to convert from binary to hexadecimal,
 Group the binary digits into groups of 4 bits --- a

nibble.

2.3 Converting Between Bases

Converting Binary to
Hexadecimal

 Each hexadecimal digit corresponds to 4 binary bits.

 Example: Translate the binary integer
000101101010011110010100 to hexadecimal

Converting Hexadecimal to
Binary

 Each hexadecimal digit can be
converted to its 4-bit binary number
to form the binary equivalent.

 Using groups of hextets, the binary number

1359510 (= 110101000110112) in

hexadecimal is:

 Octal (base 8) values are derived from binary by

using groups of three bits (8 = 23):

Octal was useful when a computer used
six-bit words.

If the number of bits
is not a multiple of 4,
pad on the left with
zeros!

2.3 Converting Between Bases

351B16

324338

Conversion between bases 2
and 2^n

 Convert from base 2 to base 16

 Convert from base 2 to base 8

1 0 1 1 1 0 0 1 1 0 1 0 1 0 2 = 2 E 6 A 16

2 E 6 A

1 0 1 1 1 0 0 1 1 0 1 0 1 0 2 = 2 7 1 5 2 8
2 7 1 5 2

Converting Hexadecimal to
Decimal

 Multiply each digit by its corresponding
power of 16:

Decimal = (d3  163) + (d2  162) + (d1  161) + (d0  160)

di = hexadecimal digit at the ith position

 Examples:
 123416 = (1  163) + (2  162) + (3  161) + (4  160)

= 466010

 3BA416 = (3  163) + (11 * 162) + (10  161) + (4 
160) =1526810

Exercise

 5816=________10

 1528=________10

 567=________10

 5211=________10

 Once you get the result, please verify your result by

converting back!

 Don’t user calculator!

Conversion between bases 2^m
and 2^n

 Convert from base 16 to base 8

 You can use a intermediate radix number

 For example

 Base 16 to Base 2 (binary)

 Base 2 (binary) to Base 8

A9DB316 = 1010 1001 1101 1011 00112
= 10 101 001 110 110 110 0112
= 25166638

EXERCISES

 17610 = _______16

 5580110 =_______8

 A616 = _______13

 558 =_______16

Conversion between bases 2 and
base N

 You must familiar with the
table on right

 You must familiar with the
following conversion:
 Converting from bases 2 to

base 2^n

 Converting between base 2^m
and base 2^n

 Converting from bases 2 to
base 10

 Converting from bases 10
(decimal) to base 16 (hex)

hex dec binary
0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer

Binary addition

 When the sum exceeds 1, carry a 1
over to the next-more-significant
column (addition rules)

 0 + 0 = 0 carry 0

 0 + 1 = 1 carry 0

 1 + 0 = 1 carry 0

 1 + 1 = 0 carry 1

Binary subtraction

 Subtraction rules

 0 - 0 = 0 borrow 0

 0 - 1 = 1 borrow 1

 1 - 0 = 1 borrow 0

 1 - 1 = 0 borrow 0

Unsigned number: Addition and
subtraction

 Exercise: Use unsigned binary to
compute

 10010+1010

 10010-1010

 Use 8-bit unsigned numbers to
calculate 10010 + 10010 + 10010 using
binary addition

Unsigned number: Overflow

 Possible solution:

 If data is stored in register, you should use longer register,

which can hold more bits

 In this case, you need a register, which has at least two bytes

to hold the result

Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer

2.4 Signed Integer
Representation

 So far, we have presented the conversions only

involve unsigned numbers  all positive or 0

 To represent signed integers, computer systems

user the high-order bit to indicate the sign of a

number.

 The high-order bit is the leftmost bit, which
also called the “Most Significant Bit” (MSB).

 0  a positive number or 0;

 1  a negative number or 0.

 The remaining bits contain the value of the number

 In a byte, signed integer representation

 7 bits to represent the value of the number

 1 sign bit.

 There are three ways, where signed binary integers

may be expressed:

 Signed magnitude

 One’s complement

 Two’s complement

2.4 Signed Integer
Representation

Two's Complement
Representation

8-bit Binary

value

Unsigned

value

Signed

value

00000000 0 0

00000001 1 +1

00000010 2 +2

.

01111110 126 +126

01111111 127 +127

10000000 128 -128

10000001 129 -127

.

11111110 254 -2

11111111 255 -1

 Positive numbers

 Signed value = Unsigned value

 Negative numbers

 Signed value = Unsigned value - 2n

 n = number of bits

N-bit two’s complement

 Positive integer

 Set leftmost bit to 0

 Express magnitude in binary in the rightmost
n-1 bits

 Negative integer

 Represent the magnitude (positive) as above

 Then negate (complement) the result (see
next slide), and add 1

 The leftmost bit is the sign bit

 0 for positive

 1 for negative

leftmost bit

Negative Integer Representation

 2’s compliment for a negative number -x

1. Represent the positive number x in binary

2. Negate all bits

3. Add 1 to the result

Let n = 6 bits

Represent magnitude +1410 = 001110

Complement each bit 110001

Add 1 + 1

110010

Result -1410 = 1100102

Check by negating the result

Start with result -1410 = 110010

Complement each bit 001101

Add 1 + 1

001110

As expected, we get +1410 = 0011102

Another Example

Sum of an integer and its 2's complement must be zero:

00100100 + 11011100 = 00000000 (8-bit sum)  Ignore Carry

starting value 00100100 = +36

step1: reverse the bits (1's complement) 11011011

step 2: add 1 to the value from step 1 + 1

sum = 2's complement representation 11011100 = -36

 Represent -36 in 2’s complement format

 Verification:

Addition and subtraction

 Addition of two’s complement

numbers

 Add all n bits using binary arithmetic

 Throw away any carry from the leftmost
bit position

 Do this whether the signs are the same
or different

 For example: X-Y

 First, negate Y. Then, add to X

 Thus, X-Y= X + (-Y)

Examples of addition

Let n = 6 bits

Add 5 and 6 to obtain 11

+510 = 000101

+610 = 000110

+1110 = 001011

Let n = 6 bits

-14 + 9 = –5

-1410 = 110010

+910 = 001001

-510 = 111011

Let n = 6 bits

-14 - 9 = -23

-1410 = 110010

-910 = 110111

-2310 = 101001

Check magnitude of -510

Negate -510 = 111011

Complement 000100

Add 1 + 1

Magnitude: +5 = 000101

OK

Check magnitude of -2310

Negate -2310 = 101001

Complement 010110

Add 1 + 1

Magnitude: +23 = 010111

OK

Verification

Wrap Up

 2’s complement:

 Positive integer  Same

 Negative integer  Complement all

bits and add 1

 Use two’s complement to compute

 10010+1010

 -10010+1010

 10010-1010

 -10010-1010

Please first convert decimal to binary

Overflow detection

 X, Y and Z are N-bit 2’s-complement
numbers and Z2c=X2c+Y2c

 Overflow occurs if X2c+Y2c exceeds the
maximum value represented by N-bits.

 If the signs of X and Y are different, no
overflow detected for Z2c=X2c+Y2c.

 In case the signs of X and Y are the
same, if the sign of X2c+Y2c is opposite,
overflow detected.
 Case 1: X, Y positive, Z sign bit =‘1’

 Case 2: X, Y negative, Z sign bit =‘0’

 X2c=(01111010)2c, Y2c=(10001010)2c,

X2c+Y2c=(00000100)2c No overflow

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 0

1 0 0 0 0 0 1 0 0

Carry-out 1 ignored

Example

 X2c=(11111010)2c,
Y2c=(10001010)2c,

X2c+Y2c=(10000100)2c No overflow

1 1 1 1 1 0 1 0

1 0 0 0 1 0 1 0

1 1 0 0 0 0 1 0 0

Carry-out 1 ignored

Sign = 1

Example

 X2c=(10011010)2c, Y2c=(10001010)2c,

X2c+Y2c=(00100100)2c Overflow detected

1 0 0 1 1 0 1 0

1 0 0 0 1 0 1 0

1 0 0 1 0 0 1 0 0

Carry-out 1

Sign =0

Example

 X2c=(01111010)2c, Y2c=(00001010)2c,

X2c+Y2c=(10000100)2c Overflow detected

0 1 1 1 1 0 1 0

0 0 0 0 1 0 1 0

1 0 0 0 0 1 0 0

Sign=1 negative

Example

 X2c=(00111010)2c, Y2c=(00001010)2c,

X2c+ Y2c=(01000100)2c No overflow

0 0 1 1 1 0 1 0

0 0 0 0 1 0 1 0

0 1 0 0 0 1 0 0

Sign=0 positive

Example

Programming Example

#include <stdio.h>

int main()

{

int a = 32767;

short b;

printf ("size of int = %ld, size of short = %ld\n", sizeof(int), sizeof(short));

b = (short)a;

printf ("a = %d, b = %d\n", a, b);

a ++;

b = (short)a;

printf ("a = %d, b = %d\n", a, b);

return 0;

}

A Production Issue
(C Language)

void do_something(short argu)

{

……

}

int main()

{

int db_table_key;

……..

do_something(db_table_key);

…….

}

 In binary system, Multiplication/Division by 2
very easily using an arithmetic shift operation

 A left arithmetic shift inserts a 0 in for the
rightmost bit and shifts everything else left one
bit; in effect, it multiplies by 2

 A right arithmetic shift shifts everything one bit to
the right, but copies the sign bit; it divides by 2

 Let’s look at the following examples…

2.4 Signed Integer
Representation

Bit Shifting (Arithmetic & Logical
shift)

00010111 (decimal +23) LEFT-SHIFT

= 00101110 (decimal +46)

10010111 (decimal −105) RIGHT-SHIFT

= 11001011 (decimal −53)

Left arithmetic shift Right arithmetic shift

 To multiply 23 by 4, simply left-shift twice

 To divide 105 by 4, simply right-shift twice

Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer

79

 The two’s complement representation that we have

just presented deals with signed integer values only.

 Without modification, these formats are not useful in

scientific or business applications that deal with real

number values.

 Floating-point representation solves this problem.

2.5 Floating-Point Representation

https://www.youtube.com/watch?v=GlRG9x0JRMc

81

2.5 Floating-Point Representation

 If we are clever programmers, we can perform floating-

point calculations using any integer format.

 This is called floating-point emulation, because floating

point values aren’t stored as such; we just create

programs that make it seem as if floating-point values

are being used.

 Most of today’s computers are equipped with specialized

hardware that performs floating-point arithmetic with no

special programming required.

82

 Floating-point numbers allow an arbitrary number of

decimal places to the right of the decimal point.

 For example: 0.5  0.25 = 0.125

 They are often expressed in scientific notation.

 For example:

0.125 = 1.25  10-1

5,000,000 = 5.0  106

2.5 Floating-Point Representation

83

 Computers use a form of scientific notation for

floating-point representation

 Numbers written in scientific notation have three

components:

2.5 Floating-Point Representation

84

 Computer representation of a floating-point number

consists of three fixed-size fields:

 This is the standard arrangement of these fields.

Note: Although “significand” and “mantissa” do not technically mean the

same thing, many people use these terms interchangeably. We use the term

“significand” to refer to the fractional part of a floating point number.

2.5 Floating-Point Representation

85

 The one-bit sign field is the sign of the stored value.

 The size of the exponent field determines the range of

values that can be represented.

 The size of the significand determines the precision of

the representation.

2.5 Floating-Point Representation

86

 We introduce a hypothetical “Simple Model” to

explain the concepts

 In this model:

 A floating-point number is 14 bits in length

 The exponent field is 5 bits

 The significand field is 8 bits

2.5 Floating-Point Representation

87

 The significand is always preceded by an implied

binary point.

 Thus, the significand always contains a fractional

binary value.

 The exponent indicates the power of 2 by which the

significand is multiplied.

2.5 Floating-Point Representation

88

 Example:

 Express 3210 in the simplified 14-bit floating-
point model.

 We know that 32 is 25. So in (binary) scientific notation 32
= 1.0 x 25 = 0.1 x 26.

 In a moment, we’ll explain why we prefer the
second notation versus the first.

 Using this information, we put 110 (= 610) in the exponent
field and 1 in the significand as shown.

2.5 Floating-Point Representation

89

 The illustrations shown at

the right are all

equivalent

representations for 32

using our simplified

model.

 Not only do these

synonymous

representations waste

space, but they can also

cause confusion.

2.5 Floating-Point Representation

90

 Another problem with our system is that we have

made no allowances for negative exponents. We

have no way to express 0.5 (=2 -1)! (Notice that there

is no sign in the exponent field.)

All of these problems can be fixed with no

changes to our basic model.

2.5 Floating-Point Representation

91

 To resolve the problem of synonymous forms, we

establish a rule that the first digit of the significand

must be 1, with no ones to the left of the radix point.

 This process, called normalization, results in a unique

pattern for each floating-point number.

 In our simple model, all significands must have
the form 0.1xxxxxxxx

 For example, 4.5 = 100.1 x 20 = 1.001 x 22 =
0.1001 x 23. The last expression is correctly
normalized.

In our simple instructional model, we use no implied bits.

2.5 Floating-Point Representation

92

 To provide for negative exponents, we will use a

biased exponent.

 In our case, we have a 5-bit exponent.

 25-1 – 1 = 24-1 = 15

 Thus will use 15 for our bias: our exponent
will use excess-15 representation.

 In our model, exponent values less than 15 are

negative, representing fractional numbers.

2.5 Floating-Point Representation

93

 Example:

 Express 3210 in the revised 14-bit floating-point
model.

 We know that 32 = 1.0 x 25 = 0.1 x 26.

 To use our excess 15 biased exponent, we add 15 to 6,

giving 2110 (=101012).

 So we have:

2.5 Floating-Point Representation

94

 Example:

 Express 0.062510 in the revised 14-bit floating-
point model.

 We know that 0.0625 is 2-4. So in (binary) scientific

notation 0.0625 = 1.0 x 2-4 = 0.1 x 2 -3.

 To use our excess 15 biased exponent, we add 15 to -3,

giving 1210 (=011002).

2.5 Floating-Point Representation

95

 Example:

 Express -26.62510 in the revised 14-bit floating-
point model.

 We find 26.62510 = 11010.1012. Normalizing, we have:

26.62510 = 0.11010101 x 2 5.

 To use our excess 15 biased exponent, we add 15 to 5,

giving 2010 (=101002). We also need a 1 in the sign bit.

2.5 Floating-Point Representation

96

 The IEEE has established a standard for floating-

point numbers

 The IEEE-754 single precision floating point

standard uses an 8-bit exponent (with a bias of

127) and a 23-bit significand.

 The IEEE-754 double precision standard uses an

11-bit exponent (with a bias of 1023) and a 52-bit

significand.

2.5 Floating-Point Representation

97

 In both the IEEE single-precision and double-

precision floating-point standard, the significant has

an implied 1 to the LEFT of the radix point.

 The format for a significand using the IEEE
format is: 1.xxx…

 For example, 4.5 = .1001 x 23 in IEEE format is
4.5 = 1.001 x 22. The 1 is implied, which
means is does not need to be listed in the
significand (the significand would include only
001).

2.5 Floating-Point Representation

98

 Example: Express -3.75 as a floating point number

using IEEE single precision.

 First, let’s normalize according to IEEE rules:

 3.75 = -11.112 = -1.111 x 21

 The bias is 127, so we add 127 + 1 = 128 (this is our

exponent)

 The first 1 in the significand is implied, so we have:

 Since we have an implied 1 in the significand, this equates to

-(1).1112 x 2 (128 – 127) = -1.1112 x 21 = -11.112 = -3.75.

(implied)

2.5 Floating-Point Representation

Exercise

 Use IEEE-754 single precision floating
point standard to find binary
representation of the following real
number:

 0.0625

 -26.625

100

 Using the IEEE-754 single precision floating point

standard:

 An exponent of 255 indicates a special value.

 If the significand is zero, the value is  infinity.

 If the significand is nonzero, the value is NaN,
“not a number,” often used to flag an error
condition.

 Using the double precision standard:

 The “special” exponent value for a double
precision number is 2047, instead of the 255
used by the single precision standard.

2.5 Floating-Point Representation

What is zero divided by zero?

102

 Both the 14-bit model that we have presented and the

IEEE-754 floating point standard allow two

representations for zero.

 Zero is indicated by all zeros in the exponent
and the significand, but the sign bit can be
either 0 or 1.

 This is why programmers should avoid testing a

floating-point value for equality to zero.

 Negative zero does not equal positive zero.

2.5 Floating-Point Representation

103

 Floating-point addition and subtraction are done

using methods analogous to how we perform

calculations using pencil and paper.

 The first thing that we do is express both operands in

the same exponential power, then add the numbers,

preserving the exponent in the sum.

 If the exponent requires adjustment, we do so at the

end of the calculation.

2.5 Floating-Point Representation

104

 Example:

 Find the sum of 1210 and 1.2510 using the 14-bit
“simple” floating-point model.

 We find 1210 = 0.1100 x 2 4. And 1.2510 = 0.101 x 2 1 =

0.000101 x 2 4.

2.5 Floating-Point Representation

• Thus, our sum is

0.110101 x 24.

105

 No matter how many bits we use in a floating-point

representation, our model must be finite.

 The real number system is, of course, infinite, so our

models can give nothing more than an approximation

of a real value.

 At some point, every model breaks down, introducing

errors into our calculations.

 By using a greater number of bits in our model, we

can reduce these errors, but we can never totally

eliminate them.

2.5 Floating-Point Representation

Examples

 Use JavaScript Console to compute
the following:

 1.03 - 0.42

 1.00 - 9*0.1

Avoid float and double if exact
answers are required!!!

Software Disaster

https://www.youtube.com/watch?v=6OSfl7LMlJQ

https://www.youtube.com/watch?v=6OSfl7LMlJQ

108

 Our job becomes one of reducing error, or at least

being aware of the possible magnitude of error in our

calculations.

 We must also be aware that errors can compound

through repetitive arithmetic operations.

 For example, our 14-bit model cannot exactly

represent the decimal value 128.5. In binary, it is 9

bits wide:

10000000.12 = 128.510

2.5 Floating-Point Representation

109

 When we try to express 128.510 in our 14-bit model,

we lose the low-order bit, giving a relative error of:

 If we had a procedure that repetitively added 0.5 to

128.5, we would have an error of nearly 2% after

only four iterations.

128.5 - 128

128.5
 0.39%

2.5 Floating-Point Representation

110

 Floating-point errors can be reduced when we use

operands that are similar in magnitude.

 If we were repetitively adding 0.5 to 128.5, it would

have been better to iteratively add 0.5 to itself and

then add 128.5 to this sum.

 In this example, the error was caused by loss of the

low-order bit.

 Loss of the high-order bit is more problematic.

2.5 Floating-Point Representation

111

 Floating-point overflow and underflow can cause

programs to crash.

 Overflow occurs when there is no room to store the

high-order bits resulting from a calculation.

 Underflow occurs when a value is too small to store,

possibly resulting in division by zero.

Experienced programmers know that it’s better for a

program to crash than to have it produce incorrect, but

plausible, results.

2.5 Floating-Point Representation

112

 When discussing floating-point numbers, it is important

to understand the terms range, precision, and

accuracy.

 The range of a numeric integer format is the difference

between the largest and smallest values that can be

expressed.

 Accuracy refers to how closely a numeric

representation approximates a true value.

 The precision of a number indicates how much

information we have about a value

2.5 Floating-Point Representation

113

 Most of the time, greater precision leads to better

accuracy, but this is not always true.

 For example, 3.1333 is a value of pi that is
accurate to two digits, but has 5 digits of
precision.

 There are other problems with floating point numbers.

 Because of truncated bits, you cannot always assume

that a particular floating point operation is associative or

distributive.

2.5 Floating-Point Representation

114

 This means that we cannot assume:

(a + b) + c = a + (b + c) or

a*(b + c) = ab + ac

 Moreover, to test a floating point value for equality to some

other number, it is best to declare a “nearness to x” epsilon

value. For example, instead of checking to see if floating point

x is equal to 2 as follows:

if x = 2 then …

it is better to use:

if (abs(x - 2) < epsilon) then ...

(assuming we have epsilon defined correctly!)

2.5 Floating-Point Representation

Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer

2.6 Characters in Computer

 You might say: “Well, I know numbers can be

represented as binary, what about characters?”

 Characters are also represented as
binary

 However, all characters uses ASCII (/ˈæski/
ass-kee), as a character-encoding scheme.

 ASCII --- American Standard Code for
Information Interchange

ASCII Code

 It encodes 128 specified characters into
7-bit binary integers as shown by the
ASCII chart.

 The characters encoded are numbers 0 to
9, lowercase letters a to z, uppercase
letters A to Z, basic punctuation symbols,
control codes that originated with Teletype
machines, and a space.

 For the full ASCII table, see next page

 For example, lowercase j would become
binary 1101010 (decimal 106) in ASCII.

54 68 65 20 45 6E 64

What do these hexadecimal numbers
represent?

Is ASCII Enough?

 What about other characters, which is
not English characters?

 The Unicode will be needed

Unicode

 Unicode is a computing industry standard for the consistent encoding,
representation, and handling of text expressed in most of the world's
writing systems.

 The latest version of Unicode contains a repertoire of more than
110,000 characters covering 100 scripts and multiple symbol sets.

 As of June 2014, the most recent version is Unicode 7.0. The standard is
maintained by the Unicode Consortium.

 The most commonly used Unicode encodings are UTF-8, UTF-16 and
the now-obsolete UCS-2.

 UTF-8 uses one byte for any ASCII character, all of which have the same
code values in both UTF-8 and ASCII encoding, and up to four bytes for
other characters.

 UTF-16 extends UCS-2, using one 16-bit unit for the characters that were
representable in UCS-2 and two 16-bit units (4 × 8 bit) to handle each of
the additional characters.

 UCS-2 uses a 16-bit code unit (two 8-bit bytes) for each character, but
cannot encode every character in the current Unicode standard.

http://www.w3schools.com/charsets/ref_utf_misc_symbols.asp

https://en.wikipedia.org/wiki/Unicode_Consortium
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UCS-2

 Computers store data in the form of bits, bytes, and words

using the binary numbering system.

 Hexadecimal numbers are formed using four-bit groups

called nibbles.

 Signed integers can be stored in one’s complement, two’s

complement, or signed magnitude representation.

 Floating-point numbers are usually coded using the IEEE

754 floating-point standard.

 Floating-point operations are not necessarily commutative

or distributive.

 Character data is stored using ASCII, EBCDIC, or Unicode.

Chapter 2 Conclusion

End of Chapter 2

