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Chapter 2 Objectives

 Understand the fundamentals of numerical data 

representation and manipulation in computer systems.

 Master the skill of converting between different numeric-

radix systems.

 Understand how errors can occur in computations 

because of overflow and truncation.

 Understand the fundamental concepts of floating-point 

representation.

 Gain familiarity with the most popular character codes.



Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer



2.1 Introduction
 A bit is the most basic unit of information in a computer.

 It is a state of either “on” or “off”, “high” or 
“low” voltage in a digital circuit.

 In a computer, a bit could be either “1” or “0”.

 A byte is a group of 8 bits.

 a byte is the smallest possible unit of storage 
in computer systems

 A group of 4 bits is called a nibble.

 A byte consists of 2 nibbles: 

 The “high-order” nibble and the “low-order” nibble.



 A word is a contiguous group of bytes.

 Words can be any number of bits or bytes.

 According to different computer systems, 
the size of word could be 2 bytes (16 bits), 
4 bytes (32 bits), or 8 bytes (64 bits) bits.

2.1 Introduction



2.1 Introduction



Byte or Word Addressable

 A computer allows either a byte or a word to be 
addressable

 Addressable: a particular unit of storage can 
be retrieved by CPU, according to its 
location in memory. 

 A byte is the smallest possible addressable
unit of storage in a byte-addressable
computer

 A word is the smallest addressable unit of 
storage in a word-addressable computer 



2.2 Positional Numbering 
Systems

 Bytes store numbers use the position of each bit 

to represent a power of 2 (radix of 2).

 The binary system is also called the base-2 
system.

 Our decimal system is the base-10 system, 

because the position of each number 

represents a power of 10 (radix of 2).

 When the radix of a number is other than 10, the 

base is denoted as a subscript.  

 Sometimes, the subscript 10 is added for 
emphasis



 Let’s first look at numbers in base-10 number 

system

 The decimal number 94710 (base-10) is:

 The decimal number 5836.4710 (base-10) is:

5836.4710 = 5  103 + 8  102 + 3  101 + 6 

 100 + 4  10-1 + 7  10-2

94710 = 9  102 + 4  101 + 7  100

2.2 Positional Numbering 
Systems



 Then, look at numbers in base-2 number 

system

 The binary number 110012 (base-2) is:

 110012 = 2510

1  24 + 1  23 + 0  22 + 0  21 + 1  20

= 16 + 8 + 0 + 0 + 1 = 2510

2.2 Positional Numbering 
Systems



Practice

 (01111101)2 = ?

 (123)8 = ?

 (123)3 = ?

Any problem??



 Because binary numbers are the basis for all 

data representation in computer systems 

 It is important that you become proficient with 

binary system.

 Your knowledge of the binary numbering 

system will help you understand the 

operations of all computer components

 As well as the instruction set of computer.

Why Do I Have To Learn And 
Convert Binary Numbers?



 How can any integer (base-10 number) be converted 

into any radix system?

 There are two methods of conversion: 

 The Subtraction (-) method, and 

 The Division (/) remainder method.

 Let’s use the subtraction method to convert 19010 to 

X3.

2.3 Converting Between Bases



 https://scratch.mit.edu/projects/26329434/

https://scratch.mit.edu/projects/26329434/


 Converting the decimal number 

19010 to X3.

 Let’s try different integers 
i=3n

 35 = 243 > 190 

 The largest power of 3 that 
we need is 34 = 81 <190, 
and  81  2 = 162.

 Write down the 2 and 
subtract 162 from 190, get 
the remainder 28.

2.3 Converting Between Bases: 

Subtraction



 Converting 19010 to X3...

 The next power of 3 is           
33 = 27 < 28, so we 
subtract 27 and write 
down the numeral 1 as 
our result. 

 The next power of 3 is 32

= 9 > 1, too large, so we 
skip 32

2.3 Converting Between Bases:

Subtraction



 Converting 19010 to X3...

 31 = 3>1. too large, so 
we skip 31

 The last power of 3 = 30

= 1, is our last choice, 
and it gives us a 
difference of 0.

 Our result, reading from 
top to bottom is:

19010 = 210013

2.3 Converting Between Bases:
Subtraction

The subtraction method is more intuitive, but 

cumbersome.  



 Let’s try another method of conversion: 

Division.

 The idea is that:

 Successive division by a base is equivalent to 

successive subtraction by powers of the base!

 Let’s use the division method to convert 19010 to 

X3, again.

2.3 Converting Between Bases:

Division



 Converting 19010 to base 3...

 First we take the number 
that we wish to convert 
and divide it by the radix 
in which we would like to 
convert to.

 In this case, 190/3  the 
quotient is 63, and the 
remainder is 1.

2.3 Converting Between Bases



 Converting 19010 to base 

3...

 63 is evenly divisible 
by 3.

 The quotient is 21, 
the remainder is 0.

2.3 Converting Between Bases



 Converting 19010 to base 3...

 Continue in this way until 
the quotient is 0.

 In the final calculation, we 
note that 3 divides 2 zero 
times with a remainder of 
2.

 Our result, reading from 
bottom to top is:

19010 = 210013

2.3 Converting Between Bases

It is mechanical but easier! 



Exercise

 45810=________2

 65210=________2

 45810=________3

 65210=________5

 Once you get the result, please verify your result by 

converting back!

 Don’t user calculator!



 Fractional numbers can be approximated in all 

base systems, too.

 Unlike integer values, fractional numbers do not

necessarily have exact representations under all 

radices.

 The quantity ½  is exactly representable in the binary 

and decimal systems, but is not in the base 3 

numbering system.

2.3 Converting Fractional 

Numbers



 Fractional decimal numbers have non-zero 

digits on the right of the decimal point.

 Fractional values of other radix systems have 

nonzero digits on the right of the radix point.

 Numerals on the right of a radix point represent 

negative powers of the radix. For example

0.4710 =  4  10-1 + 7  10-2

0.112 =  1  2-1 + 1  2-2

=  ½ + ¼

=  0.5 + 0.25 

=  0.7510

2.3 Converting Fractional Numbers



 Like the integer conversions, you can use either 

of the following two methods: 

 The Subtraction (-) method, or 

 The multiplication (x) method.

 The subtraction method for fractions is same as 

the method for integer 

 Subtract negative powers of the radix.

 Always start with the largest value --- first, n-1, 

where n is the radix.

2.3 Converting Fractional Numbers



 Using the subtraction method 

to convert the decimal 0.812510

to X2.

 Our result, reading from 
top to bottom is:

0.812510= 0.11012

 Subtraction stops when 
the remainder becomes 0

 Of course, this method 
works with any base, not 
just binary.

2.3 Converting Fractional 

Numbers

0.125



 Using the multiplication
method to convert the 

decimal 0.812510 to X2, we 

multiply by the radix 2.

 The first product 
carries into the 
units place.

2.3 Converting Fractional 

Numbers



 Converting 0.812510 to X2. . 

– Ignoring the value in the 
units place at each step, 
continue multiplying each 
fractional part by the 
radix.

2.3 Converting Fractional 

Numbers



 Converting 0.812510 to X2 . .

 You are finished when the 
product is 0, or until you 
have reached the desired 
number of binary places.

 Our result, reading from top 
to bottom is:

0.812510 = 0.11012

 Multiplication stops when the 
fractional part becomes 0

 This method also works with 
any base. Just use the target 
radix as the multiplier.

2.3 Converting Fractional 

Numbers



 Binary numbering (base 2) system is the most 

important radix system in computers.

 But, it is difficult to read long binary strings

 For example:    110101000110112 = 

1359510

 For compactness, binary numbers are usually 

expressed as hexadecimal (base-16)

numbers.

2.3 Binary and Hexadecimal 
Number



 The hexadecimal numbering system uses the 

numerals 0,.. ,9, A,…,F

 1210 = C16

 2610 = 1A16

 It is easy to convert between base 16 and base 

2, because 16 = 24.

 Thus, to convert from binary to hexadecimal, 
 Group the binary digits into groups of 4 bits --- a 

nibble.

2.3 Converting Between Bases



Converting Binary to 
Hexadecimal

 Each hexadecimal digit corresponds to 4 binary bits.

 Example: Translate the binary integer 
000101101010011110010100 to  hexadecimal



Converting Hexadecimal to 
Binary 

 Each hexadecimal digit can be 
converted to its 4-bit binary number 
to form the binary equivalent. 



 Using groups of hextets, the binary number 

1359510 (= 110101000110112) in 

hexadecimal is:

 Octal (base 8) values are derived from binary by 

using groups of three bits (8 = 23):

Octal was useful when a computer used 
six-bit words.

If the number of bits 
is not a multiple of 4, 
pad on the left with 
zeros!

2.3 Converting Between Bases

351B16

324338



Conversion between bases 2 
and 2^n

 Convert from base 2 to base 16

 Convert from base 2 to base 8

1 0 1 1 1 0 0 1 1 0 1 0 1 0 2 =  2 E 6 A 16

2          E              6             A

1 0 1 1 1 0 0 1 1 0 1 0 1 0 2 =  2 7 1 5 2 8
2        7          1          5          2



Converting Hexadecimal to 
Decimal

 Multiply each digit by its corresponding 
power of 16:

Decimal = (d3  163) + (d2  162) + (d1  161) + (d0  160)

di = hexadecimal digit at the ith position

 Examples:
 123416 = (1  163) + (2  162) + (3  161) + (4  160) 

= 466010

 3BA416 = (3  163) + (11 * 162) + (10  161) + (4 
160) =1526810



Exercise

 5816=________10

 1528=________10

 567=________10

 5211=________10

 Once you get the result, please verify your result by 

converting back!

 Don’t user calculator!



Conversion between bases 2^m 
and 2^n

 Convert from base 16 to base 8

 You can use a intermediate radix number

 For example

 Base 16 to Base 2 (binary)

 Base 2 (binary) to Base 8

A9DB316 = 1010 1001 1101  1011  00112 
= 10 101 001 110 110 110 0112 
= 25166638



EXERCISES

 17610 = _______16

 5580110 =_______8

 A616 = _______13

 558 =_______16



Conversion between bases 2 and 
base N

 You must familiar with the 
table on right

 You must familiar with the 
following conversion:
 Converting from bases 2 to 

base 2^n

 Converting between base 2^m
and base 2^n

 Converting from bases 2 to 
base 10

 Converting from bases 10 
(decimal) to base 16 (hex)

hex dec binary
0 0  0000

1 1  0001

2 2  0010

3  3  0011

4 4  0100

5  5  0101

6  6  0110

7  7  0111

8  8  1000

9  9  1001

A  10  1010

B  11  1011

C  12  1100

D  13  1101

E  14  1110

F  15  1111



Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer



Binary addition

 When the sum exceeds 1, carry a 1 
over to the next-more-significant 
column (addition rules)

 0 + 0 = 0  carry 0

 0 + 1 = 1  carry 0

 1 + 0 = 1  carry 0

 1 + 1 = 0  carry 1



Binary subtraction

 Subtraction rules

 0 - 0 = 0  borrow 0

 0 - 1 = 1  borrow 1

 1 - 0 = 1  borrow 0

 1 - 1 = 0  borrow 0



Unsigned number: Addition and 
subtraction

 Exercise: Use unsigned binary to 
compute 

 10010+1010

 10010-1010

 Use 8-bit unsigned numbers to 
calculate 10010 + 10010 + 10010 using 
binary addition



Unsigned number: Overflow

 Possible solution:

 If data is stored in register, you should use longer register, 

which can hold more bits

 In this case, you need a register, which has at least two bytes 

to hold the result



Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer



2.4 Signed Integer 
Representation

 So far, we have presented the conversions only 

involve unsigned numbers  all positive or 0

 To represent signed integers, computer systems 

user the high-order bit to indicate the sign of a 

number.

 The high-order bit is the leftmost bit, which 
also called the “Most Significant Bit” (MSB).

 0  a positive number or 0; 

 1  a negative number or 0.

 The remaining bits contain the value of the number



 In a byte, signed integer representation

 7 bits to represent the value of the number

 1 sign bit.

 There are three ways, where signed binary integers 

may be expressed:  

 Signed magnitude 

 One’s complement

 Two’s complement

2.4 Signed Integer 
Representation



Two's Complement 
Representation

8-bit Binary

value

Unsigned

value

Signed

value

00000000 0 0

00000001 1 +1

00000010 2 +2

. . . . . . . . .

01111110 126 +126

01111111 127 +127

10000000 128 -128

10000001 129 -127

. . . . . . . . .

11111110 254 -2

11111111 255 -1

 Positive numbers

 Signed value = Unsigned value

 Negative numbers

 Signed value = Unsigned value - 2n

 n = number of bits



N-bit two’s complement

 Positive integer

 Set leftmost bit to 0

 Express magnitude in binary in the rightmost 
n-1 bits

 Negative integer

 Represent the magnitude (positive) as above

 Then negate (complement) the result (see 
next slide), and add 1

 The leftmost bit is the sign bit

 0 for positive

 1 for negative

leftmost bit



Negative Integer Representation

 2’s compliment for a negative number -x

1. Represent the positive number x in binary

2. Negate all bits

3. Add 1 to the result

Let n = 6 bits

Represent magnitude  +1410 = 001110

Complement each bit               110001

Add 1                                        +        1

110010

Result  -1410 = 1100102

Check by negating the result

Start with result     -1410 = 110010

Complement each bit        001101

Add 1                                 +        1

001110

As expected, we get  +1410 = 0011102



Another Example

Sum of an integer and its 2's complement must be zero:

00100100 + 11011100 = 00000000 (8-bit sum)  Ignore Carry

starting value 00100100 = +36

step1: reverse the bits (1's complement) 11011011

step 2: add 1 to the value from step 1 +      1

sum = 2's complement representation 11011100 = -36

 Represent -36 in 2’s complement format

 Verification:



Addition and subtraction

 Addition of two’s complement 

numbers

 Add all n bits using binary arithmetic

 Throw away any carry from the leftmost 
bit position

 Do this whether the signs are the same 
or different

 For example: X-Y

 First, negate Y. Then, add to X

 Thus, X-Y= X + (-Y)



Examples of addition

Let n = 6 bits

Add 5 and 6 to obtain 11

+510 =  000101

+610 =  000110

+1110 =  001011

Let n = 6 bits

-14 + 9 = –5

-1410 =  110010

+910 =  001001

-510 =  111011

Let n = 6 bits

-14 - 9 = -23 

-1410 =  110010

-910 =  110111

-2310 =  101001

Check magnitude of -510

Negate -510 =   111011

Complement       000100

Add 1 +        1

Magnitude: +5 =  000101

OK

Check magnitude of -2310

Negate -2310 =  101001

Complement        010110

Add 1 +        1

Magnitude: +23 = 010111

OK

Verification



Wrap Up

 2’s complement:

 Positive integer  Same

 Negative integer  Complement all 

bits and add 1

 Use two’s complement to compute 

 10010+1010

 -10010+1010

 10010-1010

 -10010-1010

Please first convert decimal to binary



Overflow detection

 X, Y and Z are N-bit 2’s-complement 
numbers and Z2c=X2c+Y2c

 Overflow occurs if X2c+Y2c exceeds the 
maximum value represented by N-bits.

 If the signs of X and Y are different, no 
overflow detected for Z2c=X2c+Y2c.

 In case the signs of X and Y are the 
same, if the sign of X2c+Y2c is opposite, 
overflow detected.
 Case 1: X, Y positive,  Z sign bit =‘1’

 Case 2: X, Y negative, Z sign bit =‘0’



 X2c=(01111010)2c, Y2c=(10001010)2c, 

X2c+Y2c=(00000100)2c  No overflow

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 0

1 0 0 0 0 0 1 0 0

Carry-out 1 ignored

Example



 X2c=(11111010)2c, 
Y2c=(10001010)2c, 

X2c+Y2c=(10000100)2c  No overflow

1 1 1 1 1 0 1 0

1 0 0 0 1 0 1 0

1 1 0 0 0 0 1 0 0

Carry-out 1 ignored

Sign = 1

Example



 X2c=(10011010)2c, Y2c=(10001010)2c, 

X2c+Y2c=(00100100)2c  Overflow detected

1 0 0 1 1 0 1 0

1 0 0 0 1 0 1 0

1 0 0 1 0 0 1 0 0

Carry-out 1

Sign =0

Example



 X2c=(01111010)2c, Y2c=(00001010)2c, 

X2c+Y2c=(10000100)2c  Overflow detected

0 1 1 1 1 0 1 0

0 0 0 0 1 0 1 0

1 0 0 0 0 1 0 0

Sign=1  negative

Example



 X2c=(00111010)2c, Y2c=(00001010)2c, 

X2c+ Y2c=(01000100)2c  No overflow

0 0 1 1 1 0 1 0

0 0 0 0 1 0 1 0

0 1 0 0 0 1 0 0

Sign=0  positive

Example



Programming Example

#include <stdio.h>

int main()

{

int a = 32767;

short b;

printf ("size of int = %ld, size of short = %ld\n", sizeof(int), sizeof(short));   

b = (short)a;    

printf ("a = %d, b = %d\n", a, b);

a ++;

b = (short)a;    

printf ("a = %d, b = %d\n", a, b);

return 0;

}



A Production Issue 
(C Language)

void do_something(short argu)

{

……

}

int main()

{

int db_table_key;

……..

do_something(db_table_key);

…….

}



 In binary system, Multiplication/Division by 2 
very easily using an arithmetic shift operation

 A left arithmetic shift inserts a 0 in for the 
rightmost bit and shifts everything else left one 
bit; in effect, it multiplies by 2

 A right arithmetic shift shifts everything one bit to 
the right, but copies the sign bit; it divides by 2

 Let’s look at the following examples…

2.4 Signed Integer 
Representation



Bit Shifting (Arithmetic & Logical 
shift)

00010111 (decimal +23) LEFT-SHIFT 

= 00101110 (decimal +46)

10010111 (decimal −105) RIGHT-SHIFT 

= 11001011 (decimal −53)

Left arithmetic shift Right arithmetic shift

 To multiply 23 by 4, simply left-shift twice

 To divide 105 by 4, simply right-shift twice



Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer



79

 The two’s complement representation that we have 

just presented deals with signed integer values only.

 Without modification, these formats are not useful in 

scientific or business applications that deal with real 

number values.

 Floating-point representation solves this problem.

2.5 Floating-Point Representation



https://www.youtube.com/watch?v=GlRG9x0JRMc


81

2.5 Floating-Point Representation

 If we are clever programmers, we can perform floating-

point calculations using any integer format.

 This is called floating-point emulation, because floating 

point values aren’t stored as such; we just create 

programs that make it seem as if floating-point values 

are being used.

 Most of today’s computers are equipped with specialized 

hardware that performs floating-point arithmetic with no 

special programming required.



82

 Floating-point numbers allow an arbitrary number of 

decimal places to the right of the decimal point.

 For example: 0.5  0.25 = 0.125

 They are often expressed in scientific notation.

 For example:

0.125 = 1.25  10-1

5,000,000 = 5.0  106

2.5 Floating-Point Representation



83

 Computers use a form of scientific notation for 

floating-point representation 

 Numbers written in scientific notation have three

components:

2.5 Floating-Point Representation



84

 Computer representation of a floating-point number 

consists of three fixed-size fields:

 This is the standard arrangement of these fields.

Note: Although “significand” and “mantissa” do not technically mean the 

same thing, many people use these terms interchangeably.  We use the term 

“significand” to refer to the fractional part of a floating point number.

2.5 Floating-Point Representation



85

 The one-bit sign field is the sign of the stored value.

 The size of the exponent field determines the range of 

values that can be represented.

 The size of the significand determines the precision of 

the representation.

2.5 Floating-Point Representation



86

 We introduce a hypothetical “Simple Model” to 

explain the concepts

 In this model:

 A floating-point number is 14 bits in length

 The exponent field is 5 bits

 The significand field is 8 bits

2.5 Floating-Point Representation



87

 The significand is always preceded by an implied 

binary point.

 Thus, the significand always contains a fractional 

binary value.

 The exponent indicates the power of 2 by which the 

significand is multiplied.

2.5 Floating-Point Representation



88

 Example:

 Express 3210 in the simplified 14-bit floating-
point model.

 We know that 32 is 25.  So in (binary) scientific notation 32 
= 1.0 x 25 = 0.1 x 26. 

 In a moment, we’ll explain why we prefer the 
second notation versus the first.

 Using this information, we put 110 (= 610) in the exponent 
field and 1 in the significand as shown.

2.5 Floating-Point Representation



89

 The illustrations shown at 

the right are all

equivalent 

representations for 32 

using our simplified 

model.

 Not only do these 

synonymous 

representations waste 

space, but they can also 

cause confusion.

2.5 Floating-Point Representation



90

 Another problem with our system is that we have 

made no allowances for negative exponents.  We 

have no way to express 0.5 (=2 -1)!  (Notice that there 

is no sign in the exponent field.)

All of these problems can be fixed with no 

changes to our basic model.

2.5 Floating-Point Representation



91

 To resolve the problem of synonymous forms, we 

establish a rule that the first digit of the significand

must be 1, with no ones to the left of the radix point.  

 This process, called normalization, results in a unique 

pattern for each floating-point number.

 In our simple model, all significands must have 
the form 0.1xxxxxxxx

 For example, 4.5 = 100.1 x 20 = 1.001 x 22 = 
0.1001 x 23.  The last expression is correctly 
normalized.

In our simple instructional model, we use no implied bits.

2.5 Floating-Point Representation



92

 To provide for negative exponents, we will use a 

biased exponent.

 In our case, we have a 5-bit exponent.

 25-1 – 1 = 24-1 = 15  

 Thus will use 15 for our bias: our exponent 
will use excess-15 representation.

 In our model, exponent values less than 15 are 

negative, representing fractional numbers.

2.5 Floating-Point Representation
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 Example:

 Express 3210 in the revised 14-bit floating-point 
model.

 We know that 32 = 1.0 x 25 = 0.1 x 26.

 To use our excess 15 biased exponent, we add 15 to 6, 

giving 2110 (=101012). 

 So we have:

2.5 Floating-Point Representation
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 Example:

 Express 0.062510 in the revised 14-bit floating-
point model.

 We know that 0.0625 is 2-4.  So in (binary) scientific 

notation 0.0625 = 1.0 x 2-4 = 0.1 x 2 -3.

 To use our excess 15 biased exponent, we add 15 to -3, 

giving 1210 (=011002). 

2.5 Floating-Point Representation
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 Example:

 Express -26.62510 in the revised 14-bit floating-
point model.

 We find 26.62510 = 11010.1012.  Normalizing, we have: 

26.62510 = 0.11010101 x 2 5.

 To use our excess 15 biased exponent, we add 15 to 5, 

giving 2010 (=101002). We also need a 1 in the sign bit. 

2.5 Floating-Point Representation
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 The IEEE has established a standard for floating-

point numbers

 The IEEE-754 single precision floating point 

standard uses an 8-bit exponent (with a bias of 

127) and a 23-bit significand.

 The IEEE-754 double precision standard uses an 

11-bit exponent (with a bias of 1023) and a 52-bit 

significand.

2.5 Floating-Point Representation
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 In both the IEEE single-precision and double-

precision floating-point standard, the significant has 

an implied 1 to the LEFT of the radix point.

 The format for a significand using the IEEE 
format is: 1.xxx…

 For example, 4.5 = .1001 x 23 in IEEE format is 
4.5 = 1.001 x 22.  The 1 is implied, which 
means is does not need to be listed in the 
significand (the significand would include only 
001).

2.5 Floating-Point Representation
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 Example: Express -3.75 as a floating point number 

using IEEE single precision.

 First, let’s normalize according to IEEE rules:

 3.75 = -11.112 = -1.111 x 21

 The bias is 127, so we add 127 + 1 = 128 (this is our 

exponent)

 The first 1 in the significand is implied, so we have:

 Since we have an implied 1 in the significand, this equates to

-(1).1112 x 2 (128 – 127) = -1.1112 x 21 = -11.112 = -3.75. 

(implied)

2.5 Floating-Point Representation



Exercise

 Use IEEE-754 single precision floating 
point standard to find binary 
representation of the following real 
number:

 0.0625

 -26.625
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 Using the IEEE-754 single precision floating point 

standard: 

 An exponent of 255 indicates a special value.

 If the significand is zero, the value is   infinity.

 If the significand is nonzero, the value is NaN, 
“not a number,” often used to flag an error 
condition.

 Using the double precision standard:

 The “special” exponent value for a double 
precision number is 2047, instead of the 255 
used by the single precision standard.

2.5 Floating-Point Representation



What is zero divided by zero?
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 Both the 14-bit model that we have presented and the 

IEEE-754 floating point standard allow two 

representations for zero.

 Zero is indicated by all zeros in the exponent 
and the significand, but the sign bit can be 
either 0 or 1.

 This is why programmers should avoid testing a 

floating-point value for equality to zero.

 Negative zero does not equal positive zero.

2.5 Floating-Point Representation
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 Floating-point addition and subtraction are done 

using methods analogous to how we perform 

calculations using pencil and paper.

 The first thing that we do is express both operands in 

the same exponential power, then add the numbers, 

preserving the exponent in the sum.

 If the exponent requires adjustment, we do so at the 

end of the calculation.

2.5 Floating-Point Representation
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 Example:

 Find the sum of 1210 and 1.2510 using the 14-bit 
“simple” floating-point model.

 We find 1210 = 0.1100 x 2 4.  And 1.2510 = 0.101 x 2 1 = 

0.000101 x 2 4.

2.5 Floating-Point Representation

• Thus, our sum is 

0.110101 x 24. 
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 No matter how many bits we use in a floating-point 

representation, our model must be finite.

 The real number system is, of course, infinite, so our 

models can give nothing more than an approximation

of a real value. 

 At some point, every model breaks down, introducing 

errors into our calculations.

 By using a greater number of bits in our model, we 

can reduce these errors, but we can never totally 

eliminate them.

2.5 Floating-Point Representation



Examples

 Use JavaScript Console to compute 
the following:

 1.03 - 0.42

 1.00 - 9*0.1

Avoid float and double if exact 
answers are required!!!



Software Disaster

https://www.youtube.com/watch?v=6OSfl7LMlJQ

https://www.youtube.com/watch?v=6OSfl7LMlJQ
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 Our job becomes one of reducing error, or at least 

being aware of the possible magnitude of error in our 

calculations.

 We must also be aware that errors can compound 

through repetitive arithmetic operations.

 For example, our 14-bit model cannot exactly 

represent the decimal value 128.5.  In binary, it is 9 

bits wide:

10000000.12 = 128.510

2.5 Floating-Point Representation



109

 When we try to express 128.510 in our 14-bit model, 

we lose the low-order bit, giving a relative error of:

 If we had a procedure that repetitively added 0.5 to 

128.5, we would have an error of nearly 2% after 

only four iterations.

128.5 - 128

128.5
 0.39%

2.5 Floating-Point Representation
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 Floating-point errors can be reduced when we use 

operands that are similar in magnitude.

 If we were repetitively adding 0.5 to 128.5, it would 

have been better to iteratively add 0.5 to itself and 

then add 128.5 to this sum.

 In this example, the error was caused by loss of the 

low-order bit.

 Loss of the high-order bit is more problematic.

2.5 Floating-Point Representation
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 Floating-point overflow and underflow can cause 

programs to crash.

 Overflow occurs when there is no room to store the 

high-order bits resulting from a calculation.

 Underflow occurs when a value is too small to store, 

possibly resulting in division by zero.

Experienced programmers know that it’s better for  a 

program to crash than to have it produce incorrect, but 

plausible, results.

2.5 Floating-Point Representation
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 When discussing floating-point numbers, it is important 

to understand the terms range, precision, and

accuracy.

 The range of a numeric integer format is the difference 

between the largest and smallest values that can be 

expressed.

 Accuracy refers to how closely a numeric 

representation approximates a true value.

 The precision of a number indicates how much 

information we have about a value

2.5 Floating-Point Representation
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 Most of the time, greater precision leads to better 

accuracy, but this is not always true.

 For example, 3.1333 is a value of pi that is 
accurate to two digits, but has 5 digits of 
precision.

 There are other problems with floating point numbers.

 Because of truncated bits, you cannot always assume 

that a particular floating point operation is associative or 

distributive.

2.5 Floating-Point Representation



114

 This means that we cannot assume:

(a + b) + c = a + (b + c)  or

a*(b + c) = ab + ac

 Moreover, to test a floating point value for equality to some 

other number, it is best to declare a “nearness to x” epsilon 

value.  For example, instead of checking to see if floating point 

x is equal to 2 as follows:

if x = 2 then …

it is better to use:

if (abs(x - 2) < epsilon) then ... 

(assuming we have epsilon defined correctly!)

2.5 Floating-Point Representation



Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer



2.6 Characters in Computer

 You might say: “Well, I know numbers can be 

represented as binary, what about characters?”

 Characters are also represented as 
binary

 However, all characters uses ASCII (/ˈæski/ 
ass-kee), as a character-encoding scheme. 

 ASCII --- American Standard Code for 
Information Interchange



ASCII Code

 It encodes 128 specified characters into 
7-bit binary integers as shown by the 
ASCII chart.

 The characters encoded are numbers 0 to 
9, lowercase letters a to z, uppercase 
letters A to Z, basic punctuation symbols, 
control codes that originated with Teletype 
machines, and a space. 

 For the full ASCII table, see next page



 For example, lowercase j would become 
binary 1101010 (decimal 106) in ASCII.



54 68 65 20 45 6E 64

What do these hexadecimal numbers 
represent?





Is ASCII Enough?

 What about other characters, which is 
not English characters?

 The Unicode will be needed



Unicode

 Unicode is a computing industry standard for the consistent encoding, 
representation, and handling of text expressed in most of the world's 
writing systems. 

 The latest version of Unicode contains a repertoire of more than 
110,000 characters covering 100 scripts and multiple symbol sets. 

 As of June 2014, the most recent version is Unicode 7.0. The standard is 
maintained by the Unicode Consortium.

 The most commonly used Unicode encodings are UTF-8, UTF-16 and 
the now-obsolete UCS-2. 

 UTF-8 uses one byte for any ASCII character, all of which have the same 
code values in both UTF-8 and ASCII encoding, and up to four bytes for 
other characters. 

 UTF-16 extends UCS-2, using one 16-bit unit for the characters that were 
representable in UCS-2 and two 16-bit units (4 × 8 bit) to handle each of 
the additional characters.

 UCS-2 uses a 16-bit code unit (two 8-bit bytes) for each character, but 
cannot encode every character in the current Unicode standard. 

http://www.w3schools.com/charsets/ref_utf_misc_symbols.asp

https://en.wikipedia.org/wiki/Unicode_Consortium
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UCS-2


 Computers store data in the form of bits, bytes, and words 

using the binary numbering system.

 Hexadecimal numbers are formed using four-bit groups 

called nibbles.

 Signed integers can be stored in one’s complement, two’s 

complement, or signed magnitude representation.

 Floating-point numbers are usually coded using the IEEE 

754 floating-point standard.

 Floating-point operations are not necessarily commutative 

or distributive.

 Character data is stored using ASCII, EBCDIC, or Unicode.

Chapter 2 Conclusion
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