
Chapter 2 – Data
Representation

CS 271 Computer Architecture

Purdue University Fort Wayne

Chapter 2 Objectives

 Understand the fundamentals of numerical data

representation and manipulation in computer systems.

 Master the skill of converting between different numeric-

radix systems.

 Understand how errors can occur in computations

because of overflow and truncation.

 Understand the fundamental concepts of floating-point

representation.

 Gain familiarity with the most popular character codes.

Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer

2.1 Introduction
 A bit is the most basic unit of information in a computer.

 It is a state of either “on” or “off”, “high” or
“low” voltage in a digital circuit.

 In a computer, a bit could be either “1” or “0”.

 A byte is a group of 8 bits.

 a byte is the smallest possible unit of storage
in computer systems

 A group of 4 bits is called a nibble.

 A byte consists of 2 nibbles:

 The “high-order” nibble and the “low-order” nibble.

 A word is a contiguous group of bytes.

 Words can be any number of bits or bytes.

 According to different computer systems,
the size of word could be 2 bytes (16 bits),
4 bytes (32 bits), or 8 bytes (64 bits) bits.

2.1 Introduction

2.1 Introduction

Byte or Word Addressable

 A computer allows either a byte or a word to be
addressable

 Addressable: a particular unit of storage can
be retrieved by CPU, according to its
location in memory.

 A byte is the smallest possible addressable
unit of storage in a byte-addressable
computer

 A word is the smallest addressable unit of
storage in a word-addressable computer

2.2 Positional Numbering
Systems

 Bytes store numbers use the position of each bit

to represent a power of 2 (radix of 2).

 The binary system is also called the base-2
system.

 Our decimal system is the base-10 system,

because the position of each number

represents a power of 10 (radix of 2).

 When the radix of a number is other than 10, the

base is denoted as a subscript.

 Sometimes, the subscript 10 is added for
emphasis

 Let’s first look at numbers in base-10 number

system

 The decimal number 94710 (base-10) is:

 The decimal number 5836.4710 (base-10) is:

5836.4710 = 5 103 + 8 102 + 3 101 + 6

 100 + 4 10-1 + 7 10-2

94710 = 9 102 + 4 101 + 7 100

2.2 Positional Numbering
Systems

 Then, look at numbers in base-2 number

system

 The binary number 110012 (base-2) is:

 110012 = 2510

1 24 + 1 23 + 0 22 + 0 21 + 1 20

= 16 + 8 + 0 + 0 + 1 = 2510

2.2 Positional Numbering
Systems

Practice

 (01111101)2 = ?

 (123)8 = ?

 (123)3 = ?

Any problem??

 Because binary numbers are the basis for all

data representation in computer systems

 It is important that you become proficient with

binary system.

 Your knowledge of the binary numbering

system will help you understand the

operations of all computer components

 As well as the instruction set of computer.

Why Do I Have To Learn And
Convert Binary Numbers?

 How can any integer (base-10 number) be converted

into any radix system?

 There are two methods of conversion:

 The Subtraction (-) method, and

 The Division (/) remainder method.

 Let’s use the subtraction method to convert 19010 to

X3.

2.3 Converting Between Bases

 https://scratch.mit.edu/projects/26329434/

https://scratch.mit.edu/projects/26329434/

 Converting the decimal number

19010 to X3.

 Let’s try different integers
i=3n

 35 = 243 > 190

 The largest power of 3 that
we need is 34 = 81 <190,
and 81 2 = 162.

 Write down the 2 and
subtract 162 from 190, get
the remainder 28.

2.3 Converting Between Bases:

Subtraction

 Converting 19010 to X3...

 The next power of 3 is
33 = 27 < 28, so we
subtract 27 and write
down the numeral 1 as
our result.

 The next power of 3 is 32

= 9 > 1, too large, so we
skip 32

2.3 Converting Between Bases:

Subtraction

 Converting 19010 to X3...

 31 = 3>1. too large, so
we skip 31

 The last power of 3 = 30

= 1, is our last choice,
and it gives us a
difference of 0.

 Our result, reading from
top to bottom is:

19010 = 210013

2.3 Converting Between Bases:
Subtraction

The subtraction method is more intuitive, but

cumbersome.

 Let’s try another method of conversion:

Division.

 The idea is that:

 Successive division by a base is equivalent to

successive subtraction by powers of the base!

 Let’s use the division method to convert 19010 to

X3, again.

2.3 Converting Between Bases:

Division

 Converting 19010 to base 3...

 First we take the number
that we wish to convert
and divide it by the radix
in which we would like to
convert to.

 In this case, 190/3 the
quotient is 63, and the
remainder is 1.

2.3 Converting Between Bases

 Converting 19010 to base

3...

 63 is evenly divisible
by 3.

 The quotient is 21,
the remainder is 0.

2.3 Converting Between Bases

 Converting 19010 to base 3...

 Continue in this way until
the quotient is 0.

 In the final calculation, we
note that 3 divides 2 zero
times with a remainder of
2.

 Our result, reading from
bottom to top is:

19010 = 210013

2.3 Converting Between Bases

It is mechanical but easier!

Exercise

 45810=________2

 65210=________2

 45810=________3

 65210=________5

 Once you get the result, please verify your result by

converting back!

 Don’t user calculator!

 Fractional numbers can be approximated in all

base systems, too.

 Unlike integer values, fractional numbers do not

necessarily have exact representations under all

radices.

 The quantity ½ is exactly representable in the binary

and decimal systems, but is not in the base 3

numbering system.

2.3 Converting Fractional

Numbers

 Fractional decimal numbers have non-zero

digits on the right of the decimal point.

 Fractional values of other radix systems have

nonzero digits on the right of the radix point.

 Numerals on the right of a radix point represent

negative powers of the radix. For example

0.4710 = 4 10-1 + 7 10-2

0.112 = 1 2-1 + 1 2-2

= ½ + ¼

= 0.5 + 0.25

= 0.7510

2.3 Converting Fractional Numbers

 Like the integer conversions, you can use either

of the following two methods:

 The Subtraction (-) method, or

 The multiplication (x) method.

 The subtraction method for fractions is same as

the method for integer

 Subtract negative powers of the radix.

 Always start with the largest value --- first, n-1,

where n is the radix.

2.3 Converting Fractional Numbers

 Using the subtraction method

to convert the decimal 0.812510

to X2.

 Our result, reading from
top to bottom is:

0.812510= 0.11012

 Subtraction stops when
the remainder becomes 0

 Of course, this method
works with any base, not
just binary.

2.3 Converting Fractional

Numbers

0.125

 Using the multiplication
method to convert the

decimal 0.812510 to X2, we

multiply by the radix 2.

 The first product
carries into the
units place.

2.3 Converting Fractional

Numbers

 Converting 0.812510 to X2. .

– Ignoring the value in the
units place at each step,
continue multiplying each
fractional part by the
radix.

2.3 Converting Fractional

Numbers

 Converting 0.812510 to X2 . .

 You are finished when the
product is 0, or until you
have reached the desired
number of binary places.

 Our result, reading from top
to bottom is:

0.812510 = 0.11012

 Multiplication stops when the
fractional part becomes 0

 This method also works with
any base. Just use the target
radix as the multiplier.

2.3 Converting Fractional

Numbers

 Binary numbering (base 2) system is the most

important radix system in computers.

 But, it is difficult to read long binary strings

 For example: 110101000110112 =

1359510

 For compactness, binary numbers are usually

expressed as hexadecimal (base-16)

numbers.

2.3 Binary and Hexadecimal
Number

 The hexadecimal numbering system uses the

numerals 0,.. ,9, A,…,F

 1210 = C16

 2610 = 1A16

 It is easy to convert between base 16 and base

2, because 16 = 24.

 Thus, to convert from binary to hexadecimal,
 Group the binary digits into groups of 4 bits --- a

nibble.

2.3 Converting Between Bases

Converting Binary to
Hexadecimal

 Each hexadecimal digit corresponds to 4 binary bits.

 Example: Translate the binary integer
000101101010011110010100 to hexadecimal

Converting Hexadecimal to
Binary

 Each hexadecimal digit can be
converted to its 4-bit binary number
to form the binary equivalent.

 Using groups of hextets, the binary number

1359510 (= 110101000110112) in

hexadecimal is:

 Octal (base 8) values are derived from binary by

using groups of three bits (8 = 23):

Octal was useful when a computer used
six-bit words.

If the number of bits
is not a multiple of 4,
pad on the left with
zeros!

2.3 Converting Between Bases

351B16

324338

Conversion between bases 2
and 2^n

 Convert from base 2 to base 16

 Convert from base 2 to base 8

1 0 1 1 1 0 0 1 1 0 1 0 1 0 2 = 2 E 6 A 16

2 E 6 A

1 0 1 1 1 0 0 1 1 0 1 0 1 0 2 = 2 7 1 5 2 8
2 7 1 5 2

Converting Hexadecimal to
Decimal

 Multiply each digit by its corresponding
power of 16:

Decimal = (d3 163) + (d2 162) + (d1 161) + (d0 160)

di = hexadecimal digit at the ith position

 Examples:
 123416 = (1 163) + (2 162) + (3 161) + (4 160)

= 466010

 3BA416 = (3 163) + (11 * 162) + (10 161) + (4
160) =1526810

Exercise

 5816=________10

 1528=________10

 567=________10

 5211=________10

 Once you get the result, please verify your result by

converting back!

 Don’t user calculator!

Conversion between bases 2^m
and 2^n

 Convert from base 16 to base 8

 You can use a intermediate radix number

 For example

 Base 16 to Base 2 (binary)

 Base 2 (binary) to Base 8

A9DB316 = 1010 1001 1101 1011 00112
= 10 101 001 110 110 110 0112
= 25166638

EXERCISES

 17610 = _______16

 5580110 =_______8

 A616 = _______13

 558 =_______16

Conversion between bases 2 and
base N

 You must familiar with the
table on right

 You must familiar with the
following conversion:
 Converting from bases 2 to

base 2^n

 Converting between base 2^m
and base 2^n

 Converting from bases 2 to
base 10

 Converting from bases 10
(decimal) to base 16 (hex)

hex dec binary
0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer

Binary addition

 When the sum exceeds 1, carry a 1
over to the next-more-significant
column (addition rules)

 0 + 0 = 0 carry 0

 0 + 1 = 1 carry 0

 1 + 0 = 1 carry 0

 1 + 1 = 0 carry 1

Binary subtraction

 Subtraction rules

 0 - 0 = 0 borrow 0

 0 - 1 = 1 borrow 1

 1 - 0 = 1 borrow 0

 1 - 1 = 0 borrow 0

Unsigned number: Addition and
subtraction

 Exercise: Use unsigned binary to
compute

 10010+1010

 10010-1010

 Use 8-bit unsigned numbers to
calculate 10010 + 10010 + 10010 using
binary addition

Unsigned number: Overflow

 Possible solution:

 If data is stored in register, you should use longer register,

which can hold more bits

 In this case, you need a register, which has at least two bytes

to hold the result

Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer

2.4 Signed Integer
Representation

 So far, we have presented the conversions only

involve unsigned numbers all positive or 0

 To represent signed integers, computer systems

user the high-order bit to indicate the sign of a

number.

 The high-order bit is the leftmost bit, which
also called the “Most Significant Bit” (MSB).

 0 a positive number or 0;

 1 a negative number or 0.

 The remaining bits contain the value of the number

 In a byte, signed integer representation

 7 bits to represent the value of the number

 1 sign bit.

 There are three ways, where signed binary integers

may be expressed:

 Signed magnitude

 One’s complement

 Two’s complement

2.4 Signed Integer
Representation

Two's Complement
Representation

8-bit Binary

value

Unsigned

value

Signed

value

00000000 0 0

00000001 1 +1

00000010 2 +2

.

01111110 126 +126

01111111 127 +127

10000000 128 -128

10000001 129 -127

.

11111110 254 -2

11111111 255 -1

 Positive numbers

 Signed value = Unsigned value

 Negative numbers

 Signed value = Unsigned value - 2n

 n = number of bits

N-bit two’s complement

 Positive integer

 Set leftmost bit to 0

 Express magnitude in binary in the rightmost
n-1 bits

 Negative integer

 Represent the magnitude (positive) as above

 Then negate (complement) the result (see
next slide), and add 1

 The leftmost bit is the sign bit

 0 for positive

 1 for negative

leftmost bit

Negative Integer Representation

 2’s compliment for a negative number -x

1. Represent the positive number x in binary

2. Negate all bits

3. Add 1 to the result

Let n = 6 bits

Represent magnitude +1410 = 001110

Complement each bit 110001

Add 1 + 1

110010

Result -1410 = 1100102

Check by negating the result

Start with result -1410 = 110010

Complement each bit 001101

Add 1 + 1

001110

As expected, we get +1410 = 0011102

Another Example

Sum of an integer and its 2's complement must be zero:

00100100 + 11011100 = 00000000 (8-bit sum) Ignore Carry

starting value 00100100 = +36

step1: reverse the bits (1's complement) 11011011

step 2: add 1 to the value from step 1 + 1

sum = 2's complement representation 11011100 = -36

 Represent -36 in 2’s complement format

 Verification:

Addition and subtraction

 Addition of two’s complement

numbers

 Add all n bits using binary arithmetic

 Throw away any carry from the leftmost
bit position

 Do this whether the signs are the same
or different

 For example: X-Y

 First, negate Y. Then, add to X

 Thus, X-Y= X + (-Y)

Examples of addition

Let n = 6 bits

Add 5 and 6 to obtain 11

+510 = 000101

+610 = 000110

+1110 = 001011

Let n = 6 bits

-14 + 9 = –5

-1410 = 110010

+910 = 001001

-510 = 111011

Let n = 6 bits

-14 - 9 = -23

-1410 = 110010

-910 = 110111

-2310 = 101001

Check magnitude of -510

Negate -510 = 111011

Complement 000100

Add 1 + 1

Magnitude: +5 = 000101

OK

Check magnitude of -2310

Negate -2310 = 101001

Complement 010110

Add 1 + 1

Magnitude: +23 = 010111

OK

Verification

Wrap Up

 2’s complement:

 Positive integer Same

 Negative integer Complement all

bits and add 1

 Use two’s complement to compute

 10010+1010

 -10010+1010

 10010-1010

 -10010-1010

Please first convert decimal to binary

Overflow detection

 X, Y and Z are N-bit 2’s-complement
numbers and Z2c=X2c+Y2c

 Overflow occurs if X2c+Y2c exceeds the
maximum value represented by N-bits.

 If the signs of X and Y are different, no
overflow detected for Z2c=X2c+Y2c.

 In case the signs of X and Y are the
same, if the sign of X2c+Y2c is opposite,
overflow detected.
 Case 1: X, Y positive, Z sign bit =‘1’

 Case 2: X, Y negative, Z sign bit =‘0’

 X2c=(01111010)2c, Y2c=(10001010)2c,

X2c+Y2c=(00000100)2c No overflow

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 0

1 0 0 0 0 0 1 0 0

Carry-out 1 ignored

Example

 X2c=(11111010)2c,
Y2c=(10001010)2c,

X2c+Y2c=(10000100)2c No overflow

1 1 1 1 1 0 1 0

1 0 0 0 1 0 1 0

1 1 0 0 0 0 1 0 0

Carry-out 1 ignored

Sign = 1

Example

 X2c=(10011010)2c, Y2c=(10001010)2c,

X2c+Y2c=(00100100)2c Overflow detected

1 0 0 1 1 0 1 0

1 0 0 0 1 0 1 0

1 0 0 1 0 0 1 0 0

Carry-out 1

Sign =0

Example

 X2c=(01111010)2c, Y2c=(00001010)2c,

X2c+Y2c=(10000100)2c Overflow detected

0 1 1 1 1 0 1 0

0 0 0 0 1 0 1 0

1 0 0 0 0 1 0 0

Sign=1 negative

Example

 X2c=(00111010)2c, Y2c=(00001010)2c,

X2c+ Y2c=(01000100)2c No overflow

0 0 1 1 1 0 1 0

0 0 0 0 1 0 1 0

0 1 0 0 0 1 0 0

Sign=0 positive

Example

Programming Example

#include <stdio.h>

int main()

{

int a = 32767;

short b;

printf ("size of int = %ld, size of short = %ld\n", sizeof(int), sizeof(short));

b = (short)a;

printf ("a = %d, b = %d\n", a, b);

a ++;

b = (short)a;

printf ("a = %d, b = %d\n", a, b);

return 0;

}

A Production Issue
(C Language)

void do_something(short argu)

{

……

}

int main()

{

int db_table_key;

……..

do_something(db_table_key);

…….

}

 In binary system, Multiplication/Division by 2
very easily using an arithmetic shift operation

 A left arithmetic shift inserts a 0 in for the
rightmost bit and shifts everything else left one
bit; in effect, it multiplies by 2

 A right arithmetic shift shifts everything one bit to
the right, but copies the sign bit; it divides by 2

 Let’s look at the following examples…

2.4 Signed Integer
Representation

Bit Shifting (Arithmetic & Logical
shift)

00010111 (decimal +23) LEFT-SHIFT

= 00101110 (decimal +46)

10010111 (decimal −105) RIGHT-SHIFT

= 11001011 (decimal −53)

Left arithmetic shift Right arithmetic shift

 To multiply 23 by 4, simply left-shift twice

 To divide 105 by 4, simply right-shift twice

Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer

79

 The two’s complement representation that we have

just presented deals with signed integer values only.

 Without modification, these formats are not useful in

scientific or business applications that deal with real

number values.

 Floating-point representation solves this problem.

2.5 Floating-Point Representation

https://www.youtube.com/watch?v=GlRG9x0JRMc

81

2.5 Floating-Point Representation

 If we are clever programmers, we can perform floating-

point calculations using any integer format.

 This is called floating-point emulation, because floating

point values aren’t stored as such; we just create

programs that make it seem as if floating-point values

are being used.

 Most of today’s computers are equipped with specialized

hardware that performs floating-point arithmetic with no

special programming required.

82

 Floating-point numbers allow an arbitrary number of

decimal places to the right of the decimal point.

 For example: 0.5 0.25 = 0.125

 They are often expressed in scientific notation.

 For example:

0.125 = 1.25 10-1

5,000,000 = 5.0 106

2.5 Floating-Point Representation

83

 Computers use a form of scientific notation for

floating-point representation

 Numbers written in scientific notation have three

components:

2.5 Floating-Point Representation

84

 Computer representation of a floating-point number

consists of three fixed-size fields:

 This is the standard arrangement of these fields.

Note: Although “significand” and “mantissa” do not technically mean the

same thing, many people use these terms interchangeably. We use the term

“significand” to refer to the fractional part of a floating point number.

2.5 Floating-Point Representation

85

 The one-bit sign field is the sign of the stored value.

 The size of the exponent field determines the range of

values that can be represented.

 The size of the significand determines the precision of

the representation.

2.5 Floating-Point Representation

86

 We introduce a hypothetical “Simple Model” to

explain the concepts

 In this model:

 A floating-point number is 14 bits in length

 The exponent field is 5 bits

 The significand field is 8 bits

2.5 Floating-Point Representation

87

 The significand is always preceded by an implied

binary point.

 Thus, the significand always contains a fractional

binary value.

 The exponent indicates the power of 2 by which the

significand is multiplied.

2.5 Floating-Point Representation

88

 Example:

 Express 3210 in the simplified 14-bit floating-
point model.

 We know that 32 is 25. So in (binary) scientific notation 32
= 1.0 x 25 = 0.1 x 26.

 In a moment, we’ll explain why we prefer the
second notation versus the first.

 Using this information, we put 110 (= 610) in the exponent
field and 1 in the significand as shown.

2.5 Floating-Point Representation

89

 The illustrations shown at

the right are all

equivalent

representations for 32

using our simplified

model.

 Not only do these

synonymous

representations waste

space, but they can also

cause confusion.

2.5 Floating-Point Representation

90

 Another problem with our system is that we have

made no allowances for negative exponents. We

have no way to express 0.5 (=2 -1)! (Notice that there

is no sign in the exponent field.)

All of these problems can be fixed with no

changes to our basic model.

2.5 Floating-Point Representation

91

 To resolve the problem of synonymous forms, we

establish a rule that the first digit of the significand

must be 1, with no ones to the left of the radix point.

 This process, called normalization, results in a unique

pattern for each floating-point number.

 In our simple model, all significands must have
the form 0.1xxxxxxxx

 For example, 4.5 = 100.1 x 20 = 1.001 x 22 =
0.1001 x 23. The last expression is correctly
normalized.

In our simple instructional model, we use no implied bits.

2.5 Floating-Point Representation

92

 To provide for negative exponents, we will use a

biased exponent.

 In our case, we have a 5-bit exponent.

 25-1 – 1 = 24-1 = 15

 Thus will use 15 for our bias: our exponent
will use excess-15 representation.

 In our model, exponent values less than 15 are

negative, representing fractional numbers.

2.5 Floating-Point Representation

93

 Example:

 Express 3210 in the revised 14-bit floating-point
model.

 We know that 32 = 1.0 x 25 = 0.1 x 26.

 To use our excess 15 biased exponent, we add 15 to 6,

giving 2110 (=101012).

 So we have:

2.5 Floating-Point Representation

94

 Example:

 Express 0.062510 in the revised 14-bit floating-
point model.

 We know that 0.0625 is 2-4. So in (binary) scientific

notation 0.0625 = 1.0 x 2-4 = 0.1 x 2 -3.

 To use our excess 15 biased exponent, we add 15 to -3,

giving 1210 (=011002).

2.5 Floating-Point Representation

95

 Example:

 Express -26.62510 in the revised 14-bit floating-
point model.

 We find 26.62510 = 11010.1012. Normalizing, we have:

26.62510 = 0.11010101 x 2 5.

 To use our excess 15 biased exponent, we add 15 to 5,

giving 2010 (=101002). We also need a 1 in the sign bit.

2.5 Floating-Point Representation

96

 The IEEE has established a standard for floating-

point numbers

 The IEEE-754 single precision floating point

standard uses an 8-bit exponent (with a bias of

127) and a 23-bit significand.

 The IEEE-754 double precision standard uses an

11-bit exponent (with a bias of 1023) and a 52-bit

significand.

2.5 Floating-Point Representation

97

 In both the IEEE single-precision and double-

precision floating-point standard, the significant has

an implied 1 to the LEFT of the radix point.

 The format for a significand using the IEEE
format is: 1.xxx…

 For example, 4.5 = .1001 x 23 in IEEE format is
4.5 = 1.001 x 22. The 1 is implied, which
means is does not need to be listed in the
significand (the significand would include only
001).

2.5 Floating-Point Representation

98

 Example: Express -3.75 as a floating point number

using IEEE single precision.

 First, let’s normalize according to IEEE rules:

 3.75 = -11.112 = -1.111 x 21

 The bias is 127, so we add 127 + 1 = 128 (this is our

exponent)

 The first 1 in the significand is implied, so we have:

 Since we have an implied 1 in the significand, this equates to

-(1).1112 x 2 (128 – 127) = -1.1112 x 21 = -11.112 = -3.75.

(implied)

2.5 Floating-Point Representation

Exercise

 Use IEEE-754 single precision floating
point standard to find binary
representation of the following real
number:

 0.0625

 -26.625

100

 Using the IEEE-754 single precision floating point

standard:

 An exponent of 255 indicates a special value.

 If the significand is zero, the value is infinity.

 If the significand is nonzero, the value is NaN,
“not a number,” often used to flag an error
condition.

 Using the double precision standard:

 The “special” exponent value for a double
precision number is 2047, instead of the 255
used by the single precision standard.

2.5 Floating-Point Representation

What is zero divided by zero?

102

 Both the 14-bit model that we have presented and the

IEEE-754 floating point standard allow two

representations for zero.

 Zero is indicated by all zeros in the exponent
and the significand, but the sign bit can be
either 0 or 1.

 This is why programmers should avoid testing a

floating-point value for equality to zero.

 Negative zero does not equal positive zero.

2.5 Floating-Point Representation

103

 Floating-point addition and subtraction are done

using methods analogous to how we perform

calculations using pencil and paper.

 The first thing that we do is express both operands in

the same exponential power, then add the numbers,

preserving the exponent in the sum.

 If the exponent requires adjustment, we do so at the

end of the calculation.

2.5 Floating-Point Representation

104

 Example:

 Find the sum of 1210 and 1.2510 using the 14-bit
“simple” floating-point model.

 We find 1210 = 0.1100 x 2 4. And 1.2510 = 0.101 x 2 1 =

0.000101 x 2 4.

2.5 Floating-Point Representation

• Thus, our sum is

0.110101 x 24.

105

 No matter how many bits we use in a floating-point

representation, our model must be finite.

 The real number system is, of course, infinite, so our

models can give nothing more than an approximation

of a real value.

 At some point, every model breaks down, introducing

errors into our calculations.

 By using a greater number of bits in our model, we

can reduce these errors, but we can never totally

eliminate them.

2.5 Floating-Point Representation

Examples

 Use JavaScript Console to compute
the following:

 1.03 - 0.42

 1.00 - 9*0.1

Avoid float and double if exact
answers are required!!!

Software Disaster

https://www.youtube.com/watch?v=6OSfl7LMlJQ

https://www.youtube.com/watch?v=6OSfl7LMlJQ

108

 Our job becomes one of reducing error, or at least

being aware of the possible magnitude of error in our

calculations.

 We must also be aware that errors can compound

through repetitive arithmetic operations.

 For example, our 14-bit model cannot exactly

represent the decimal value 128.5. In binary, it is 9

bits wide:

10000000.12 = 128.510

2.5 Floating-Point Representation

109

 When we try to express 128.510 in our 14-bit model,

we lose the low-order bit, giving a relative error of:

 If we had a procedure that repetitively added 0.5 to

128.5, we would have an error of nearly 2% after

only four iterations.

128.5 - 128

128.5
 0.39%

2.5 Floating-Point Representation

110

 Floating-point errors can be reduced when we use

operands that are similar in magnitude.

 If we were repetitively adding 0.5 to 128.5, it would

have been better to iteratively add 0.5 to itself and

then add 128.5 to this sum.

 In this example, the error was caused by loss of the

low-order bit.

 Loss of the high-order bit is more problematic.

2.5 Floating-Point Representation

111

 Floating-point overflow and underflow can cause

programs to crash.

 Overflow occurs when there is no room to store the

high-order bits resulting from a calculation.

 Underflow occurs when a value is too small to store,

possibly resulting in division by zero.

Experienced programmers know that it’s better for a

program to crash than to have it produce incorrect, but

plausible, results.

2.5 Floating-Point Representation

112

 When discussing floating-point numbers, it is important

to understand the terms range, precision, and

accuracy.

 The range of a numeric integer format is the difference

between the largest and smallest values that can be

expressed.

 Accuracy refers to how closely a numeric

representation approximates a true value.

 The precision of a number indicates how much

information we have about a value

2.5 Floating-Point Representation

113

 Most of the time, greater precision leads to better

accuracy, but this is not always true.

 For example, 3.1333 is a value of pi that is
accurate to two digits, but has 5 digits of
precision.

 There are other problems with floating point numbers.

 Because of truncated bits, you cannot always assume

that a particular floating point operation is associative or

distributive.

2.5 Floating-Point Representation

114

 This means that we cannot assume:

(a + b) + c = a + (b + c) or

a*(b + c) = ab + ac

 Moreover, to test a floating point value for equality to some

other number, it is best to declare a “nearness to x” epsilon

value. For example, instead of checking to see if floating point

x is equal to 2 as follows:

if x = 2 then …

it is better to use:

if (abs(x - 2) < epsilon) then ...

(assuming we have epsilon defined correctly!)

2.5 Floating-Point Representation

Outline

 Converting between different numeric-
radix systems

 Binary addition and subtraction

 Two’s complement representation

 Floating-point representation

 Characters in computer

2.6 Characters in Computer

 You might say: “Well, I know numbers can be

represented as binary, what about characters?”

 Characters are also represented as
binary

 However, all characters uses ASCII (/ˈæski/
ass-kee), as a character-encoding scheme.

 ASCII --- American Standard Code for
Information Interchange

ASCII Code

 It encodes 128 specified characters into
7-bit binary integers as shown by the
ASCII chart.

 The characters encoded are numbers 0 to
9, lowercase letters a to z, uppercase
letters A to Z, basic punctuation symbols,
control codes that originated with Teletype
machines, and a space.

 For the full ASCII table, see next page

 For example, lowercase j would become
binary 1101010 (decimal 106) in ASCII.

54 68 65 20 45 6E 64

What do these hexadecimal numbers
represent?

Is ASCII Enough?

 What about other characters, which is
not English characters?

 The Unicode will be needed

Unicode

 Unicode is a computing industry standard for the consistent encoding,
representation, and handling of text expressed in most of the world's
writing systems.

 The latest version of Unicode contains a repertoire of more than
110,000 characters covering 100 scripts and multiple symbol sets.

 As of June 2014, the most recent version is Unicode 7.0. The standard is
maintained by the Unicode Consortium.

 The most commonly used Unicode encodings are UTF-8, UTF-16 and
the now-obsolete UCS-2.

 UTF-8 uses one byte for any ASCII character, all of which have the same
code values in both UTF-8 and ASCII encoding, and up to four bytes for
other characters.

 UTF-16 extends UCS-2, using one 16-bit unit for the characters that were
representable in UCS-2 and two 16-bit units (4 × 8 bit) to handle each of
the additional characters.

 UCS-2 uses a 16-bit code unit (two 8-bit bytes) for each character, but
cannot encode every character in the current Unicode standard.

http://www.w3schools.com/charsets/ref_utf_misc_symbols.asp

https://en.wikipedia.org/wiki/Unicode_Consortium
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UCS-2

 Computers store data in the form of bits, bytes, and words

using the binary numbering system.

 Hexadecimal numbers are formed using four-bit groups

called nibbles.

 Signed integers can be stored in one’s complement, two’s

complement, or signed magnitude representation.

 Floating-point numbers are usually coded using the IEEE

754 floating-point standard.

 Floating-point operations are not necessarily commutative

or distributive.

 Character data is stored using ASCII, EBCDIC, or Unicode.

Chapter 2 Conclusion

End of Chapter 2

