Chapter 2 — Data
Representation

CS 271 Computer Architecture
Purdue University Fort Wayne

Chapter 2 Objectives

[1 Understand the fundamentals of numerical data
representation and manipulation in computer systems.

[1 Master the skill of converting between different numeric-
radix systems.

[1 Understand how errors can occur in computations
because of overflow and truncation.

[1 Understand the fundamental concepts of floating-point
representation.

[1 Gain familiarity with the most popular character codes.

Outline

Converting between different numeric-
radix systems

Binary addition and subtraction
[wo’s complement representation
Floating-point representation
Characters in computer

2.1 Introduction

[1 A bit is the most basic unit of information in a computer.

B It is a state of either “on” or “off”, “high” or
“low” voltage in a digital circuit.

B In a computer, a bit could be either "1” or “0”.
[1 A byte is a group of 8 bits.

B a byte is the smallest possible unit of storage
In computer systems

A group of 4 bits is called a nibble.

B A byte consists of 2 nibbles:
0 The “high-order” nibble and the “/ow-order” nibble.

2.1 Introduction

A word Is a contiguous group of bytes.
B Words can be any number of bits or bytes.

B According to different computer systems,
the size of word could be 2 bytes (16 bits),
4 bytes (32 bits), or 8 bytes (64 bits) bits.

2.1 Introduction

Most Significant Bit Least Significant Bit
(MSB}) Bit (LSB})

|1|ﬂ|1|1|1|ﬂ|ﬂ|1|1|ﬂ|1|ﬂ|1|ﬂ|1|1|
‘{—N|EB|.E—=-|<—N|EBLE—>|{—N|EBLE—:-|<—N|EBLE—:-‘
| J

| BYTE 1 BYTE >

- WORD

Byte or Word Addressable

A computer allows either a byte or a word to be
addressable
B Addressable: a particular unit of storage can

be retrieved by CPU, according to its
location in memory.

B A byte is the smallest possible addressable
unit of storage in a byte-addressable
computer

B A word is the smallest addressable unit of
storage in a word-addressable computer

2.2 Positional Numbering
Systems

Bytes store numbers use the position of each bit
to represent a power of 2 (radix of 2).

B The binary system is also called the base-2
system.

B Our decimal system is the base-10 system,
because the position of each number

represents a power of 10 (radix of 2).

When the radix of a number is other than 10, the
base Is denoted as a subscript.

B Sometimes, the subscript 10 is added for
emphasis

2.2 Positional Numbering
Systems

Let’s first look at numbers in base-10 number

system

The decimal number 947, (base-10) Is:

947,,= 9 x 102 + 4 x 10 + 7 x 10°

The decimal number 5836.47,, (base-10) Is:

5836.47,,= 5 x 10° + 8 x 102 + 3 x 10! + 6
x 10° + 4 x 107t + 7 x 1072

2.2 Positional Numbering

sttems

Then, look at numbers In base-2 number
system

The binary number 11001, (base-2) is:
1 x2% 4+ 1 x 234+ 0x22+0x2'+ 1 x 2°
=16 + 8 + 0 + 0 + 1 = 25,

O 11001, = 25,

Practice

(01111101), = ?

Il
“~J

(123)

ll
“~J

(123),

Any problem?

Why Do I Have To Learn And
Convert Binary Numbers?

Because binary numbers are the basis for all

data representation in computer systems

B Itis important that you become proficient with
binary system.

Your knowledge of the binary numbering

system will help you understand the
operations of all computer components

B As well as the instruction set of computer.

2.3 Converting Between Bases

How can any integer (base-10 number) be converted
Into any radix system?

There are two methods of conversion:

B The Subtraction (-) method, and

B The Division (/) remainder method.

Let's use the subtraction method to convert 190,,to
Xs.

SN

—_ |Ein;ry Bulbs %{%
- ~ o
R Y

128 64 32 1

All Off _ All On

https://scratch.mit.edu/projects/26329434/

https://scratch.mit.edu/projects/26329434/

2.3 Converting Between Bases:
Subtraction

[0 Converting the decimal number
190,, to Xs. 190

_ _ 44
B Let's try different integers loz = 3" X[
j=3" 28

B 35 =243 > 190

B The largest power of 3 that
we need is 3% = 81 <190,
and 81 x 2 = 162.

B Write down the 2 and
subtract 162 from 190, get
the remainder 28.

2.3 Converting Between Bases:
Subtraction

0 Converting 190,,to X,...

B The next power of 3 is L0 Y
33 =27 < 28, so we - 1062 3 X P
subtract 27 and write 28
down the numeral 1 as - 27 =33x[1
our result. 1]

B The next power of 3 is 32 . 2 =3 X0

=9 > 1, too large, so we
skip 32

2.3 Converting Between Bases:
Subtraction

0 Converting 190,,to X,...

190

B 3! =3>1. too large, so ~_ 162 =34 x%]|2
we skip 31 28

B The last power of 3 = 3° - 27 =33x|1
= 1, is our last choice, 1

and it gives us a - 0 =32x]|0
difference of 0. 1

B Our result, reading from - 0 =31 x|o
top to bottom is: 1

_ _ 20
190,, = 21001, é =37 X

- The subtraction method Is more intuitive, but
cumbersome.

2.3 Converting Between Bases:
Division

Let’s try another method of conversion:
Division.
The idea Is that:

B Successive division by a base Is equivalent to
successive subtraction by powers of the base!

Let's use the division method to convert 190,,to
X3, again.

2.3 Converting Between Bases

0 Converting 190,, to base 3...

B First we take the number

that we wish to convert 3 ‘ 190 |1
and divide it by the radix

in which we would like to 03
convert to.

B In this case, 190/3 = the
quotient is 63, and the
remainder is 1.

2.3 Converting Between Bases

[0 Converting 190,, to base

3...
31190 |1
B 63 is evenly divisible ‘
by 3. 3163 |0
B The quotient is 21, 21

the remainder is O.

2.3 Converting Between Bases

[0 Converting 190,,to base 3...

B Continue in this way until A
the quotient is 0. 3 ‘ 190 |1

B In the final calculation, we 3163 |o
note that 3 divides 2 zero e
times with a remainder of 3121 |0
2. —

B Our result, reading from 3 _7 .
bottom to top is: 3] 92 |9

190,, = 21001, A

It is mechanical but easier!

Exercise

458, ,=
652 ,,=
458, ,=
652,,=

oo W N N

[1 Once you get the result, please verify your result by
converting back!

[1 Don’t user calculator!

2.3 Converting Fractional
Numbers

Fractional numbers can be approximated in all
base systems, too.

Unlike integer values, fractional numbers do not
necessarily have exact representations under all
radices.

B The quantity ¥z is exactly representable in the binary
and decimal systems, but is not in the base 3
numbering system.

2.3 Converting Fractional Numbers

Fractional decimal numbers have non-zero

digits on the right of the decimal point.

B Fractional values of other radix systems have
nonzero digits on the right of the radix point.

Numerals on the right of a radix point represent

negative powers of the radix. For example

0.47,, = 4 x 1071 + 7 x 1072
0.11, = 1 x 21 + 1 x 22
= Y + Y4
= 0.5+ 0.25
= 0.75,, —

2.3 Converting Fractional Numbers

Like the integer conversions, you can use either
of the following two methods:

B The Subtraction (-) method, or

B The multiplication (x) method.

The subtraction method for fractions iIs same as
the method for integer

B Subtract negative powers of the radix.

Always start with the largest value --- first, n™,
where n is the radix.

2.3 Converting Fractional
Numbers

[0 Using the subtraction method 0.125
to convert the decimal 0.8125, 0 8125 A
to X.. .)
2 - 0.5000 =2"1%1
B Our result, reading from 0.3125 l-'!
- * |
top to bottom is: _0.2500 = 2_2EX 1
0.8125,,= 0.1101, 0.0625 I

I
O
I
"
Lo
X
O

B Subtraction stops when

the remainder becomes 0 0.0625 4
. - 0. =274 x
B Of course, this method 0.0 62% z 1

works with any base, not
just binary.

2.3 Converting Fractional
Numbers

O Using the multiplication . 8125
method to convert the : ><625§
decimal 0.8125,, to X,, we '

multiply by the radix 2.

B The first product
carries into the
units place.

2.3 Converting Fractional
Numbers

[0 Converting 0.8125,,t0 X,. . -5122
— Ignoring the value in the 16250
units place at each step,
continue multiplying each 6250
fractional part by the X 2
radix. 112500
L2500
X 2
0L 5000

2.3 Converting Fractional
Numbers

[0 Converting 0.8125,,t0 X, . .

You are finished when the
product is 0, or until you
have reached the desired
number of binary places.

Our result, reading from top
to bottom is:

0.8125,, = 0.1101,
Multiplication stops when the
fractional part becomes O

This method also works with
any base. Just use the target
radix as the multiplier.

.8125
X 2

L6250

L0250
X 2
L2500

. 2500

L. 5000

2.3 Binary and Hexadecimal
Number

Binary numbering (base 2) system is the most
Important radix system in computers.

But, it is difficult to read long binary strings

B For example: 11010100011011, =
13595,

For compactness, binary numbers are usually

expressed as hexadecimal (base-16)
numbers.

2.3 Converting Between Bases

The hexadecimal numberinag svstem uses the

numerals O,.. |9, A,...,F

B 12,5 =Cy

B 26,, = 1A

It IS easy to convert between
2, because 16 = 24,

Thus, to convert from binary

B Group the binary digits into gre
nibble.

Binary Hex Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001) 9
1010 A 10
1011 B 11
1100 e 12
1101 D 13
1110 E 14
1111 F 15

Converting Binary to
Hexadecimal

O
O

Each hexadecimal digit corresponds to 4 binary bits.

Example: Translate the binary integer
000101101010011110010100 to hexadecimal

| O A 7 0 4

0001 0110 1010 0111 1001 0100

Binary

'ﬁr—’ b I g
i B
Hexadecimal

Converting Hexadecimal to
Binary

Each hexadecimal digit can be
converted to its 4-bit binary number
to form the binary equivalent.

Hexadecimal
FORABS
Pt Toooo ! Tioo0? Mot Fronn ! Yoror!
I o al sl sl a2
'Y' _‘)
Binary

1111 000 1000 1010 1011 0101

2.3 Converting Between Bases

Using groups of hextets, the binary number
13595,,(=11010100011011,)in
hexadecimal is:

_ _ _ If the number of bits

Octal (base 8) values are derived from binary by
using groups of three bits (8 = 23):

~ Octal was useful when a computer used
six-bit words.

Conversion between bases 2
and 2'n

Convert from base 2 to base 16

10111001101010, = 16

Convert from base 2 to base 8

10111001101010, = g

Converting Hexadecimal to
Decimal

Multiply each digit by its corresponding
power of 16:

Decimal = (d; x 163) + (d, x 162) + (d; x 161) + (d, x 169)

d, = hexadecimal digit at the ith position

Examples:

B 1234, = (1 x 163) + (2 x 162) + (3 x 16!) + (4 x 169)
= 4660,

B 3BA4,. = (3 x163) + (11 * 162) + (10 x 16%) + (4 x
160) =15268,,

Exercise

386= 10
1528= 10
56,= 10

524;= 10

[1 Once you get the result, please verify your result by
converting back!

[1 Don’t user calculator!

Conversion between bases 2m
and 2'n

Convert from base 16 to base 8

You can use a intermediate radix number

For example

B Base 16 to Base 2 (binary)
B Base 2 (binary) to Base 8

A9DB3,, = 1010 1001 1101 1011 0011,
- 10 101 001 110 110 110 011,
= 2516663,

EXERCISES

17610 —

16

55801, =
Abye =

55¢ =

16

13

Conversion between bases 2 and

base N

0 You must familiar with the
table on right

[0 You must familiar with the
following conversion:

B Converting from bases 2 to
base 2”n

B Converting between base 2”m
and base 2%n

B Converting from bases 2 to
base 10

B Converting from bases 10
(decimal) to base 16 (hex)

-
T1H1CJC)UJ>>¢>G)\JG>U1h>Q)R)P=C>Q

©CONDURWN RO &
O

PP R RRE R
abhwNPFPO

binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Outline

Converting between different numeric-
radix systems

Binary addition and subtraction
[wo’s complement representation
Floating-point representation
Characters in computer

Binary addition

When the sum exceeds 1, carry a 1

over to the next-more-significant
column (addition rules)

B O0O+0=0 carry O

BO0O+1=1 carryO

B 1+0=1 carry 0

B 1+1=0 carryl

Binary subtraction

Subtraction rules

B 0-0=0 borrowO
B 0-1=1 borrow1
B 1-0=1 borrowO
B 1-1=0 borrowO

Unsigned number: Addition and
subtraction

Exercise: Use unsigned binary to
compute

® 100,,+10,,

m 100,,-10,,

Use 8-bit unsigned numbers to
calculate 100,, + 100,, + 1004, using
binary addition

Unsigned number: Overflow

[1 Possible solution:
B |f data is stored in register, you should use longer register,
which can hold more bits
B |n this case, you need a register, which has at least two bytes

to hold the result

Outline

Converting between different numeric-
radix systems

Binary addition and subtraction
Two’'s complement representation
Floating-point representation
Characters in computer

2.4 Signed Integer
Representation

So far, we have presented the conversions only

Involve unsigned numbers -> all positive or O

To represent signed integers, computer systems

user the high-order bit to indicate the sign of a
number.

B The high-order bit is the leftmost bit, which
also called the “Most Significant Bit” (MSB).

0 0 > a positive number or O;

[0 1 > a negative number or O.

The remaining bits contain the value of the number

2.4 Signed Integer
Representation

In a byte, signed integer representation
M 7 bits to represent the value of the number
® 1 sign bit.

There are three ways, where signed binary integers

may be expressed:
B Signed magnitude
B One's complement
B Two’s complement

Two's Complement
Representation

+» Positive numbers

< Signed value = Unsigned value

“* Negative numbers
< Signed value = Unsigned value - 2"

<> n = number of bits

8-bit Binary | Unsigned | Signed
value value value
00000000 0 0
00000001 1 +1
00000010 2 +2
01111110 126 +126
01111111 127 +127
10000000 128 -128
10000001 129 -127
11111110 254 -2
11111111 255 -1

N-bit two’'s complement

leftmost bit

|
1 l
[1 Positive integer
B Set leftmost bit to 0
B Express magnitude in binary in the rightmost
n-1 bits
[0 Negative integer
B Represent the magnitude (positive) as above

B Then negate (complement) the result (see
next slide), and add 1

[0 The leftmost bit is the sign bit
B O for positive
B 1 for negative

Negative Integer Representation

2's compliment for a negative number -X

1. Represent the positive number x in binary

2. Negate all bits
3. Add 1 to the result

Let n =6 bits

Represent magnitude +14,,= 001110

Complement each bit 110001
Add 1 + 1
110010

Result -14,, = 110010,

Check by negating the result

Start with result -14,, = 110010

Complement each bit 001101
Add 1 + 1
001110

As expected, we get +14,,=001110,

Another Example

1 Represent -36 in 2's complement format

starting value 00100100 = +36
stepl: reverse the bits (1's complement) 11011011
step 2: add 1 to the value from step 1 + 1
sum = 2's complement representation 11011100 = -36

4 Verification:
Sum of an integer and its 2's complement must be zero:

00100100 + 11011100 = 00000000 (8-hit sum) = Ignore Carry

Addition and subtraction

Addition of two’s complement
numbers
B Add all n bits using binary arithmetic

B Throw away any carry from the leftmost
bit position

B Do this whether the signs are the same
or different

For example: X-Y
B First, negate Y. Then, add to X

Examples of addition

Let n = 6 bits Let n = 6 bits Check magnitude of -5,
Add 5and 6toobtain 11} |-14+9=-5 Negate -5;p= 111011
Complement 000100

+5,0 = 000101 -14,,= 110010 | Add 1 + 1
+64 = 000110 +9,,= 001001 | Magnitude: +5= 000101
+11,,= 001011 -5, = 111011 OK

Let n =6 bits Check magnitude of -23,,
-14-9=-23 Negate -23,, = 101001
Complement 010110

-144o = 110010 | Add 1 + 1 Verification
9,0 = 110111 | Magnitude: +23 = 010111
-234,= 101001 OK

Wrap Up

[1 2's complement:
B Positive integer > Same

B Negative integer > Complement all
bits and add 1

Use two’s complement to compute
® 100,,+10,,

m -100,,+10,

® 100,,-10,,

® -100,,-10,,

Please first convert decimal to binary

Overflow detection

X, Y and Z are N-bit 2's-complement

numbers and Z,.=X,.+Y,,

Overflow occurs if X,.+Y,. exceeds the

maximum value represented by N-bits.

If the signs of X and Y are different, no

overflow detected for Z,.=X,.+Y,..

In case the signs of X and Y are the
same, if the sign of X,.+Y,. is opposite,
overflow detected.

B Case 1: X, Y positive, Z sign bit ='1’

- _ . . Ly

Example

X,.=(01111010),,, Y,.=(10001010),,,
X,.+Y,.=(00000100).. No overflow

Carry-out 1 ignored

Example

X,.=(11111010),,,
Y,.=(10001010),,,

X5.+Y5.=(10000100),. No overflow
1 1 1 1 1 0 1 ©
1 0 0 0 1 0 1 O

0 0 0 0 1 0 0

1 1
\Ys
Signh =1

Carry-out 1 ignored

Example

X,.=(10011010),,, Y,.=(10001010),,,
X5.+Y,5.=(00100100),,. Overflow detected

0 1 0 0 1 0 0

1 0
\ s
Sign =0

Carry-out 1

Example

X,.=(01111010),,, Y,.=(00001010),,,
X5.+Y5.=(10000100),,. Overflow detected

Sign=1 negative

Example

X,.=(00111010),,, Y,.=(00001010),,,

X,.+ Y,.=(01000100).,. No overflow

Sigh=0 positive

Programming Example

#include <stdio.h>

int main()

{
inta = 32767;
short b;

printf ("size of int = %ld, size of short = %ld\n", sizeof(int), sizeof(short));

b = (short)a;
printf ("a = %d, b = %d\n", a, b);

a++;
b = (short)a;
printf ("a = %d, b = %d\n", a, b);

return O;

A Production Issue
(C Language)

void do_something(short argu)

int main()

{
int db_table_key;

2.4 Signed Integer
Representation

In binary system, Multiplication/Division by 2
very easily using an arithmetic shift operation

A left arithmetic shift inserts a O In for the

rightmost bit and shifts everything else left one
bit; In effect, it multiplies by 2

A right arithmetic shift shifts everything one bit to

the right, but copies the sign bit; it divides by 2

Let’s look at the following examples...

Bit Shifting (Arithmetic & Logical
shift)

%654321%!:I §654321;
[ofofo[1]o]z[1]1] lD\Ij\lj\Ij\lj\lj\l:\ljl
|a<a'|/1|a|1'|/1'|/14:|q-|1| ofofojofrfof1f1]
Left arithmetic shift Right arithmetic shift

00010111 (decimal +23) LEFT-SHIFT 10010111 (decimal -105) RIGHT-SHIFT
= 00101110 (decimal +46) = 11001011 (decimal -53)

d To multiply 23 by 4, simply left-shift twice
A To divide 105 by 4, simply right-shift twice

Outline

Converting between different numeric-
radix systems

Binary addition and subtraction
[wo’s complement representation
Floating-point representation
Characters in computer

2.5 Floating-Point Representation

The two’s complement representation that we have
just presented deals with signed integer values only.

Without modification, these formats are not useful in

scientific or business applications that deal with real
number values.

Floating-point representation solves this problem.

79

Work _sucks

A comedy from Mike Judge creator of ‘Beavis and Butt-head'
and co-creator of *King of the Hill'

OﬁiceSPace

\“.»vl}l
1

'.- I"I:TI'II'LI' el ALNEHERG DRNE RAHRRG "
RUA}?\ L)ONLYNTAEA’I’RES

I.I ‘;’;'." ’lxll\ ." IS

https://www.youtube.com/watch?v=GlRG9x0JRMc

2.5 Floating-Point Representation

If we are clever programmers, we can perform floating-
point calculations using any integer format.

This is called floating-point emulation, because floating

point values aren’t stored as such; we just create
programs that make it seem as Iif floating-point values
are being used.

Most of today’s computers are equipped with specialized
hardware that performs floating-point arithmetic with no
special programming required.

81

2.5 Floating-Point Representation

Floating-point numbers allow an arbitrary number of
decimal places to the right of the decimal point.

B For example: 0.5x0.25=0.125

They are often expressed in scientific notation.
B For example:

0.125=1.25 x 101

5,000,000 = 5.0 x 106

82

2.5 Floating-Point Representation

Computers use a form of scientific notation for

floating-point representation

Numbers written in scientific notation have three

components:

Sign Mantissa Exponent

+)1.25 x 1071

83

2.5 Floating-Point Representation

Computer representation of a floating-point number
consists of three fixed-size fields:

Sign

| ‘Exponent ‘ Significand \

This Is the standard arrangement of these fields.

Note: Although “significand” and “mantissa” do not technically mean the
same thing, many people use these terms interchangeably. We use the term
“significand” o refer to the fractional part of a floating point number.

84

2.5 Floating-Point Representation

Sign

| ‘Exponent ‘ Significand \

The one-bit sign field is the sign of the stored value.

The size of the exponent field determines the range of
values that can be represented.

The size of the significand determines the precision of
the representation.

85

2.5 Floating-Point Representation

Sign

| ‘Exponent ‘ Significand \

We introduce a hypothetical “Simple Model” to
explain the concepts

In this model:

B A floating-point number is 14 bits in length

B The exponent field is 5 bits

B The significand field is 8 bits

86

2.5 Floating-Point Representation

Sign

| ‘Exponent ‘ Significand \

The significand is always preceded by an implied
binary point.

Thus, the significand always contains a fractional
binary value.

The exponent indicates the power of 2 by which the
significand is multiplied.

87

2.5 Floating-Point Representation

Example:

B Express 32, in the simplified 14-bit floating-
point mode]I.

[0 We know that 32 is 2°. So in (binary) scientific notation 32
=1.0x 2°>=0.1 x 2°5.

B In a moment, we'll explain why we prefer the
second notation versus the first.

[1 Using this information, we put 110 (= 6,,) In the exponent
field and 1 in the significand as shown.

0100110 10000000

88

2.5 Floating-Point Representation

[1 The illustrations shown at

the right are all
equivalent 0[{00110 | 10000000

representations for 32

using our simplified

0/00111 | 01000000
model.

[J Not only do these
sSynonymous
representations waste

0O([01000 00100000

space, but they can also 0/01001 | 00010000
cause confusion.

89

2.5 Floating-Point Representation

Sign

| ‘Exponent ‘ Significand \

Another problem with our system is that we have

made no allowances for negative exponents. We

have no way to express 0.5 (=2 -1)! (Notice that there
IS NO sign Iin the exponent field.)

All of these problems can be fixed with no
changes to our basic model.

90

2.5 Floating-Point Representation

To resolve the problem of synonymous forms, we
establish a rule that the first digit of the significand
must be 1, with no ones to the left of the radix point.

This process, called normalization, results in a unique
pattern for each floating-point number.

B In our simple model, all significands must have
the form 0.1XXXXXXXX

B For example, 4.5 = 100.1 x 29 = 1.001 x 22 =
0.1001 x 23. The last expression is correctly
normalized.

In our simple instructional model, we use no implied bits.

2.5 Floating-Point Representation

To provide for negative exponents, we will use a
biased exponent.

B In our case, we have a 5-bit exponent.
m 2>l -1=2%1=15

B Thus will use 15 for our bias: our exponent
will use excess-15 representation.

In our model, exponent values less than 15 are
negative, representing fractional numbers.

92

2.5 Floating-Point Representation

O O

Example:

B Express 32, in the revised 14-bit floating-point
model.

We know that 32 =1.0 x 2°=0.1 x 2°.

To use our excess 15 biased exponent, we add 15 to 6,
giving 21,, (=10101,).

So we have:

0]10101 10000000

93

2.5 Floating-Point Representation

Example:
B Express 0.0625,, in the revised 14-bit floating-
point model.

[0 We know that 0.0625 is 2. So in (binary) scientific
notation 0.0625=1.0x24=0.1x 23

[l To use our excess 15 biased exponent, we add 15 to -3,
giving 12,, (=01100,).

0101100 10000000

94

2.5 Floating-Point Representation

Example:

B Express -26.625,, in the revised 14-bit floating-
point model.

[0 We find 26.625,, = 11010.101,. Normalizing, we have:

26.625,, = 0.11010101 x 2°>.

[l To use our excess 15 biased exponent, we add 15 to 5,
giving 20,4, (=10100,). We also need a 1 in the sign bit.

1110100 11010101

95

2.5 Floating-Point Representation

The IEEE has established a standard for floating-
point numbers

The IEEE-754 single precision floating point
standard uses an 8-bit exponent (with a bias of
127) and a 23-Dbit significand.

The IEEE-754 double precision standard uses an
11-bit exponent (with a bias of 1023) and a 52-bit
significand.

96

2.5 Floating-Point Representation

In both the IEEE single-precision and double-
precision floating-point standard, the significant has
an implied 1 to the LEFT of the radix point.

B The format for a significand using the IEEE
format is: 1.xxx...

B For example, 4.5 = .1001 x 23 in IEEE format is
4.5 =1.001 x 22. The 1 is implied, which
means is does not need to be listed in the

significand (the significand would include only
001).

97

2.5 Floating-Point Representation

Example: Express -3.75 as a floating point number
using IEEE single precision.

First, let's normalize according to IEEE rules:
B 375=-11.11,=-1.111x 2!

B Thebiasis 127, so we add 127 + 1 = 128 (this is our
exponent)

B The first 1 in the significand is implied, so we have:

ij1 00 000 O0CO0Q1T1100O0O0O0O0O0O0 0CO0O0CO0O0O0CO0O0OO0O0O0 O0

(implied

B Since we have an implied 1 in the significand, this equates to
-(1).111, x 2 @28-129) = .1 111, x 2t = -11.11, = -3.75. 98

Exercise

Use IEEE-754 single precision floating
point standard to find binary
representation of the following real
number:

m 0.0625

H -26.625

2.5 Floating-Point Representation

Using the IEEE-754 single precision floating point

standard:

B An exponent of 255 indicates a special value.
[0 If the significand is zero, the value is = infinity.

[0 If the significand is nonzero, the value is NaN,
“not a number,” often used to flag an error
condition.

Using the double precision standard:

B The “special” exponent value for a double
precision number is 2047, instead of the 255
used by the single precision standard.

100

What is zero divided by zero?

“Siri what's 0=0”
tap to edit

Imagine that you have 0
cookies and you split them
evenly among 0 friends. How
many cookies does each
person get? See, it doesn’t
make sense. And Cookie
Monster is sad that there are
no cookies. And you are sad
that you have no friends.

0 = O = Indeterminate

2.5 Floating-Point Representation

Both the 14-bit model that we have presented and the
IEEE-754 floating point standard allow two
representations for zero.

B Zero is indicated by all zeros in the exponent
and the significand, but the sign bit can be
either 0 or 1.

This is why programmers should avoid testing a
floating-point value for equality to zero.

B Negative zero does not equal positive zero.

102

2.5 Floating-Point Representation

Floating-point addition and subtraction are done
using methods analogous to how we perform
calculations using pencil and paper.

The first thing that we do is express both operands in
the same exponential power, then add the numbers,
preserving the exponent in the sum.

If the exponent requires adjustment, we do so at the
end of the calculation.

103

2.5 Floating-Point Representation

Example:

B Find the sum of 12,, and 1.25,, using the 14-bit
“simple” floating-point model.

[0 We find 12,,=0.1100 x 24. And 1.25,,=0.101 x 21 =

0.000101 x 24.

 Thus, our sum iIs
0.110101 x 24

0(10011 11000000

=+|o|10011 00010100

0(10011 11010100

104

2.5 Floating-Point Representation

No matter how many bits we use Iin a floating-point
representation, our model must be finite.

The real number system is, of course, infinite, so our
models can give nothing more than an approximation
of a real value.

At some point, every model breaks down, introducing
errors into our calculations.

By using a greater number of bits in our model, we
can reduce these errors, but we can never totally
eliminate them.

105

Examples

Use JavaScript Console to compute

the following:
m 1.03-0.42
H 1.00 - 9*%0.1

Avoid float and double if exact
answers are required!!!

Software Disaster

| Software Disaster

Disasters Channel
2 years ago * 56,156 views

During the Gulf War in the early
1990's, Operation Desert Storm use...

B WATCHED

https://www.youtube.com/watch?v=60Sfl7LMI]JQ

https://www.youtube.com/watch?v=6OSfl7LMlJQ

2.5 Floating-Point Representation

Our job becomes one of reducing error, or at least
being aware of the possible magnitude of error in our
calculations.

We must also be aware that errors can compound
through repetitive arithmetic operations.

For example, our 14-bit model cannot exactly
represent the decimal value 128.5. In binary, itis 9
bits wide:

10000000.1, = 128.5,,

108

2.5 Floating-Point Representation

When we try to express 128.5,, in our 14-bit model,
we lose the low-order bit, giving a relative error of:

128.5 - 128 0 399
128.5

If we had a procedure that repetitively added 0.5 to
128.5, we would have an error of nearly 2% after
only four iterations.

109

2.5 Floating-Point Representation

Floating-point errors can be reduced when we use
operands that are similar in magnitude.

If we were repetitively adding 0.5 to 128.5, it would
have been better to iteratively add 0.5 to itself and
then add 128.5 to this sum.

n this example, the error was caused by loss of the
ow-order bit.

_oss of the high-order bit is more problematic.

110

2.5 Floating-Point Representation

Floating-point overflow and underflow can cause
programs to crash.

Overflow occurs when there is no room to store the
high-order bits resulting from a calculation.

Underflow occurs when a value is too small to store,
possibly resulting in division by zero.

Experienced programmers know that it’s better for a
program to crash than to have it produce incorrect, but
plausible, results.

111

2.5 Floating-Point Representation

When discussing floating-point numbers, it is important
to understand the terms range, precision, and
accuracy.

The range of a numeric integer format is the difference
between the largest and smallest values that can be
expressed.

Accuracy refers to how closely a numeric
representation approximates a true value.

The precision of a number indicates how much
Information we have about a value

112

2.5 Floating-Point Representation

Most of the time, greater precision leads to better

accuracy, but this is not always true.

B For example, 3.1333 is a value of pi that is
accurate to two digits, but has 5 digits of
precision.

There are other problems with floating point numbers.

Because of truncated bits, you cannot always assume

that a particular floating point operation is associative or
distributive.

113

2.5 Floating-Point Representation

[0 This means that we cannot assume:
(@a+b)+c=a+(b+c) or
a*(b +c) =ab + ac

[J Moreover, to test a floating point value for equality to some
other number, it is best to declare a “nearness to x” epsilon
value. For example, instead of checking to see if floating point

X Is equal to 2 as follows:
if x = 2 then ...
It IS better to use:
if (abs(x - 2) < epsilon) then ...
(assuming we have epsilon defined correctly!)

114

Outline

Converting between different numeric-
radix systems

Binary addition and subtraction
[wo’s complement representation
Floating-point representation
Characters in computer

2.6 Characters in Computer

You might say: “"Well, I know numbers can be
represented as binary, what about characters?”

Characters are also represented as
binary

B However, all characters uses ASCII (/ aeski/
ass-kee), as a character-encoding scheme.

B ASCII --- American Standard Code for
Information Interchange

ASCII Code

It encodes 128 specified characters into

/-bit binary integers as shown by the
ASCII chart.

B The characters encoded are numbers O to
O, lowercase letters a to z, uppercase
letters A to Z, basic punctuation symbols,
control codes that originated with Teletype
machines, and a space.

B For the full ASCII table, see next page

Dec HxOct Char Dec Hx Oct Html Chr |Dec Hx Oct Html Chr| Dec Hx Oct Himl Chr
0 0 000 NOL fruall) 32 20 040 «#32; 3pace| 54 40 100 d; [95 a0 140 `
1l 1 001 30H (start of heading) 33 21 041 !: ! 65 41 101 «#65; & a7 51 141 =#97:; a
2 2 002 5T (start of text) 34 22 042 " 7 pe 4z 10z «#66; B 95 62 142 &«#95; b
3 3 003 ETX (end of text) 35 23 043 # # a7 43 103 «#67; C 99 53 143 c C
4 4 004 EOT {end of transmission) 36 24 044 $ & 65 44 104 «#63; D |100 64 144 d d
5 5 005 ENQ [engquiry) 57 25 045 %: % 69 45 105 «#69: E |10l 65 145 &#l01; &
6 6 006 ACE (acknowledge] 35 26 045 # & 70 46 106 F F |102 66 146 «#102; €
77 007 BEL (bell) 39 27 047 ' ' 71 47 107 «#71: = |103 &7 147 g: O
§ & 010 ES (backspace) A0 25 050 (| 72 48 110 «#72Z: H |l04 68 150 h h
9 9 011 TAE (horizontal tah) 41 29 051)) 73 49 111 I I |105 69 151 &#l05; 1
10 4 012 LF (NL line feed, new line)| 42 Zi 052 &#d=; * 74 4k 112 J T |106 64 152 &«#106;]
11 E 013 ¥T (wertical tah) 43 2B 053 «#43; + 75 4B 113 «#75; K |107 6B 153 k: k
12 [0l4 FF (NP form feed, new page)| 44 2ZC 054 &#dd; , 76 4AC 114 «#76: L |108 6C 154 l 1
13 D 015 CE (carriage return) 45 ZD 085 - - 77 4D 115 M: M |109 6D 155 m: W
14 E 0lg 30 (shift out) 45 2E 056 . . 78 4E 116 «#7&: N |110 6E 156 n 1
15 F 017 3I (shift in) 47 2F 057 «#47: / 79 4F 117 «#79: 0 (111 AF 157 o: o
le 10 020 DLE (data link escape) 45 30 060 «#45; 0 g0 50 120 «#80; F [11Z 70 le0 Z: p
17 11 021 DC1 {device control 1) 49 31 061 «#49; 1 gl 51 121 «#81: 00 |113 71 15l «#113: g4
15 12 022 DCE [device control Z) B0 32 0OR2 «#50; 2 gz 52 12z «#8Z; B [114 72 162 r: ¢
19 13 023 DC3 [device control 3) Bl 33 063 3 83 53 123 «#83; 3 [115 73 163 l15; =
20 14 024 DC4 [(device control 4) 52 34 0nd #5527 4 gd 54 124 «#34: T |11 74 154 &#lla: ©
21 15 025 NAE [negatiwve acknowledge) B3 35 065 5 5 85 55 125 #: T |117 75 165 u U
22 16 026 3TN (synchronous idle) 54 36 06e #5354 6 g6 56 126 WV |1158 76 len s +
23 17 027 ETE (end of trans. block) 85 37 0/7 # 7 g7 57 127 «#37: W |119 77 167 w: w
24 18 030 CAN (cancel) B6 35 070 Ș & 85 55 130 «#8&; X |[1z0 758 170 &#l20; ®
25 19 031 EM (end of medium) 57 39 071 «#37: 9 89 59 131 «#89; T |121 79 171 &#l121: ¥
26 14 03E2 3UE (substitute) B8 34 072 : ¢ a0 54 132 «#90; Z |122 Th 172 Z22; E
27 1B 033 EiC (escape) 59 3B 073 ț ; 91 5B 133 [[|123 7B 173 «#123; |
28 1C 034 F5 (file separator) G0 3C 074 < < 9z 5C 134 «#32; % (124 7C 174 |
29 1D 035 G3 (group separator) Gl 3D 075 «#6l; = 93 5D 135]] |125 7D 175 &«#125; }
30 1E 036 B3 (record separator) Gz JE 076 > - 94 5E 135 «#94: ~ |1z TE 176 &#l26; ~
31 1F 037 US (unit separator) 63 3F 077 &«#63; 7 95 S5F 137 &«#95; |127 7F 177 &#l127; DEL

For example, lowercase j would become
binary 1101010 (decimal 106) in ASCII.

;4 L8 L5 2045 LE b4

What do these hexadecimal numbers
represent?

PPUNG™

Is ASCII Enough?

not English characters?
B The Unicode will be needed

nnnnnnnn

vvvvvvvvvvvv

DESTINY

pu

(

nnnnn

Waeph Y yud Y ayin
2 bet S khaf 5 peh
X gimmel 7| final haf T} final peh
T daled 5 lamed X tradi
Mhyy 1 mem Y final tzadi
1 vav D final mem P kuf
Tzayin Y mun =) resh
[T het] finalnun W shin
U tet D samekh N taf

What about other characters, which is

AATE I F T A AK
PR RFERTT S ER
Sl ilddadd9%hddH
dw Dwinw| t | T |d|D | n|p |P |b |B m
SN R

Unicode

[0 Unicode is a computing industry standard for the consistent encoding,
representation, and handling of text expressed in most of the world's
writing systems.

O The latest version of Unicode contains a repertoire of more than
110,000 characters covering 100 scripts and multiple symbol sets.
B As of June 2014, the most recent version is Unicode 7.0. The standard is
maintained by the Unicode Consortium.
0 The most commonly used Unicode encodings are UTF-8, UTF-16 and
the now-obsolete UCS-2.
B UTF-8 uses one byte for any ASCII character, all of which have the same

code values in both UTF-8 and ASCII encoding, and up to four bytes for
other characters.

m UTF-16 extends UCS-2, using one 16-bit unit for the characters that were
representable in UCS-2 and two 16-bit units (4 X 8 bit) to handle each of
the additional characters.

B UCS-2 uses a 16-bit code unit (two 8-bit bytes) for each character, but
cannot encode every character in the current Unicode standard.

- http://www.w3schools.com/charsets/ref_utf _misc_symbols.asp

https://en.wikipedia.org/wiki/Unicode_Consortium
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UCS-2

Chapter 2 Conclusion

Computers store data in the form of bits, bytes, and words
using the binary numbering system.

Hexadecimal numbers are formed using four-bit groups
called nibbles.

Signed integers can be stored in one’s complement, two's
complement, or signed magnitude representation.

Floating-point numbers are usually coded using the IEEE
754 floating-point standard.

Floating-point operations are not necessarily commutative
or distributive.

Character data is stored using ASCII, EBCDIC, or Unicode.

End of Chapter 2

