
CHAPTER 5

Methods

5-2

Why Write Methods?

• Methods are commonly used to break a problem

down into small manageable pieces. This is called

divide and conquer.

• Methods simplify programs.

• If a specific task is performed in several places in

the program, a method can be written once to

perform that task, and then be executed anytime it

is needed. This is known as code reuse.

5-3

Chapter Topics

Chapter 5 discusses the following main topics:

– Introduction to Methods

– Passing Arguments to a Method

– More About Local Variables

– Returning a Value from a Method

– Problem Solving with Methods

5-4

Why Write Methods?

• Methods are commonly used to break a problem

down into small manageable pieces. This is called

divide and conquer.

• Methods simplify programs.

• If a specific task is performed in several places in

the program, a method can be written once to

perform that task, and then be executed anytime it

is needed. This is known as code reuse.

5-5

void Methods and Value-Returning

Methods

• A void method is one that simply performs a task

and then terminates.

System.out.println("Hi!");

class object method argument

• A value-returning method not only performs a task,

but also sends a value back to the code that called it.

int number =Integer.parseInt("700");

method for converting a string to number

5-6

Defining a void Method

• To create a method, you must write a definition,
which consists of a header and a body.

• The method header, which appears at the
beginning of a method definition, lists several
important things about the method, including
the method’s name.

• The method body is a collection of statements
that are performed when the method is
executed.

5-7

Two Parts of Method Declaration

public static void displayMessage()

{

System.out.println("Hello");

}

Header

Body

A void method

5-8

Parts of a Method Header

public static void displayMessage ()

{

System.out.println("Hello");

}

Method

Modifiers

Return

Type

Method

Name Parentheses

5-9

Parts of a Method Header

• Method modifiers

 public—method is publicly available to code
outside the class

 static—method belongs to a class, not a specific
object.

• Return type—void or the data type from a value-
returning method

• Method name—name that is descriptive of what
the method does

• Parentheses—contain nothing or a list of one or
more variable declarations if the method is capable

of receiving arguments. (Formal parameters list?)

5-10

Calling a Method

• A method executes when it is called.

• The main method is automatically called when a
program starts, but other methods are executed by
method call statements.

displayMessage();

• Notice that the method modifiers and the void
return type are not written in the method call
statement. Those are only written in the method
header.

• Examples: SimpleMethod.java, LoopCall.java,
CreditCard.java, DeepAndDeeper.java

SimpleMethod.java
LoopCall.java
CreditCard.java
DeepAndDeeper.java

package methodCall05_01PK;

public class MethodCallEx01 {

public static void main(String[] args) {
String str = "Pls. complete this task.";
double costPerUnit = 3106.75;
displayMessage(str, costPerUnit);

}
public static void displayMessage(String strLine,

double cost) {
System.out.printf(strLine +

"\nThe unit cost is %,.2f.\n", cost);
}//end of displayMessage

}
Pls. complete this task.
The unit cost is 3,106.75.

5-12

Documenting Methods

• A method should always be documented by writing

comments that appear just before the method’s

definition.

• The comments should provide a brief explanation

of the method’s purpose.

• The documentation comments begin with /** and

end with */.

5-13

Passing Arguments to a Method

• Values that are sent into a method are called arguments.

System.out.println("Hello");

number = Integer.parseInt(str);

• The data type of an argument in a method call must

correspond to the variable declaration in the parentheses

of the method declaration. The parameter is the variable

that holds the value being passed into a method.

• By using parameter variables in your method

declarations, you can design your own methods that

accept data this way.

• See example: PassArg.java

PassArg.java

5-14

Passing 5 to the displayValue Method

displayValue(5);

public static void displayValue(int num)

{

System.out.println("The value is " + num);

}

The argument 5 is copied into the

parameter variable num. (formal

parameter)

The method will display The value is 5

actual parameter

5-15

Argument and Parameter Data Type

Compatibility

• When you pass an argument to a method, be sure that

the argument’s data type is compatible with the

parameter variable’s data type.

• Java will automatically perform widening conversions,

but narrowing conversions will cause a compiler error.

double d = 1.0;

displayValue(d);
public static void displayValue(int num)

{

System.out.println("The value is " + num);

}

Error! Can’t convert

double to int

5-16

Passing Multiple Arguments

showSum(5, 10);

public static void showSum(double num1, double num2)

{

double sum; //to hold the sum

sum = num1 + num2;

System.out.println("The sum is " + sum);

}

The argument 5 is copied into the num1 parameter.

The argument 10 is copied into the num2 parameter.

NOTE: Order matters!

double x = 5;

double y = 10;

showSum(x, y);

5-17

Arguments are Passed by Value

• In Java, all arguments of the primitive data types are

passed by value, which means that only a copy of an

argument’s value is passed into a parameter variable.

• A method’s parameter variables are separate and distinct

from the arguments that are listed inside the parentheses

of a method call.

• If a parameter variable is changed inside a method, it has

no affect on the original argument.

• See example: PassByValue.java

PassByValue.java

package methodCall05_01PK;
public class MethodCallEx01 {

public static void main(String[] args) {
String str = "Pls. complete this task.";
final double costPerUnit = 3106.75;
int nosUnits = 10;
double totalCost;
totalCost = computeTCost(costPerUnit, 10);

//or totalCost = computeTCost(costPerUnit, nosUnits);
displayMessage(str, costPerUnit, totalCost);

}
public static void displayMessage(String strLine,

double cost, double tCost) {
System.out.printf(strLine +

"\nThe unit cost is %,.2f.\n" +
"The total cost is %,.2f.\n", cost, tCost);

}//you can change cost(or replaced by costPerUnit) although final costPerUnit.

public static double computeTCost(double uCost,
int uNos) {

return uCost * uNos;
}

}

package methodCall05_01PK;
import java.util.Random;
public class MethodCallEx01 {

public static void main(String[] args) {
int rNumber;
rNumber = RandomNosGen(100, 50);
System.out.println("The random number is " +

rNumber);
}

/**
*
* @param range
* @param between
* @return
*/

public static int RandomNosGen(int range,
int between) {

Random rand = new Random();
int rNumber = rand.nextInt(range) - between;
return rNumber;

}
}

The random number is 34

package chapter05_demos;
import java.util.Random;
public class Chapter_05_Demons {

public static void main(String[] args) {
int rNumber;
Random rand = new Random();
rNumber = RandomNosGen(rand, 100, 50);
System.out.println("The random number is "
+ rNumber);

} //end of main

public static int RandomNosGen(Random rand, int
range, int between) {

//Random rand = new Random();
int rNumber = rand.nextInt(range)-between;
return rNumber;

} //end of RandomNosGen
} //end of class

import java.util.Random;

public class RandomNosCh05 {

public static void main(String[] args) {
// TODO Auto-generated method stub

int rNumber;
Random rand = new Random();
rNumber = RandomNosGen(100, 50);
System.out.println("The random number is " + rNumber);
System.out.printf("The 2nd random number is: %.4f\n",
RandomNosGen(rand, 100, 50));

}// end of main

public static int RandomNosGen(int range, int between) {
Random rand = new Random();
int rNumber = rand.nextInt(range) - between;//between through
range-(between+1)
return rNumber;

}
public static double RandomNosGen(Random rand, int range, int
between) {

//Random rand = new Random();
double rNumber = rand.nextInt(range) + between;//(range -
between +1) through range +(between)
return rNumber;

}
}

5-22

Passing Object References to a Method

• Recall that a class type variable does not hold the

actual data item that is associated with it, but holds the

memory address of the object. A variable associated

with an object is called a reference variable.

• When an object such as a String is passed as an

argument, it is actually a reference to the object that is

passed.

5-23

Passing a Reference as an Argument

showLength(name);

public static void showLength(String str)

{

System.out.println(str + " is "

+ str.length()

+ " characters long.");

str = "Joe" // see next slide

}

address

address

“Warren”

Both variables reference the same object

The address of the object is
copied into the str parameter.

String name = “Warren”;

str

object

5-24

Strings are Immutable Objects

• Strings are immutable objects, which means that
they cannot be changed. When the line

str = "Joe";

is executed, it cannot change an immutable object, so

creates a new object.

• See example: PassString.java

address

address

“Warren”

“Joe”

The name variable holds the

address of a String object

The str variable holds the

address of a different
String object

PassString.java

package methodCall05_02StringPK;

public class MethodCallString05_02_01 {
public static void main(String[] args) {

String name = "Gary Thomas";
String say = showLength(name);
System.out.println(name + " and " + say);

}
/**
*
* @param str
* @return
*/

public static String showLength(String str)
{

System.out.println(str + " is "
+ str.length()
+ " characters long.");

//str = " joe " ;
return str;

}

}

Gary Thomas is 11 characters long.
Gary Thomas and Gary Thomas

address

Gary Thomas

name

str

address

package methodCall05_02StringPK;

public class MethodCallString05_02_01 {
public static void main(String[] args) {

String name = "Gary Thomas";
String say = showLength(name);
System.out.println(name + " and " + say);

}

public static String showLength(String str) {
System.out.println(str + " is "

+ str.length()
+ " characters long.");

str = "Joseph L. Gibson";
System.out.println(str + " is "

+ str.length()
+ " characters long.");

return str;
}

}

Gary Thomas is 11 characters long.
Joseph L. Gibson is 16 characters long.
Gary Thomas and Joseph L. Gibson

address

str

Gary Thomas

address

name

Joseph L. Gibson

5-27

@param Tag in Documentation Comments

• You can provide a description of each parameter in your

documentation comments by using the @param tag.

• General format

@param parameterName Description

• See example: TwoArgs2.java

• All @param tags in a method’s documentation comment

must appear after the general description.The description

can span several lines.

TwoArgs2.java

5-28

More About Local Variables

• A local variable is declared inside a method and is not
accessible to statements outside the method.

• Different methods can have local variables with the same
names because the methods cannot see each other’s local
variables.

• A method’s local variables exist only while the method is
executing. When the method ends, the local variables and
parameter variables are destroyed and any values stored
are lost.

• Local variables are not automatically initialized with a
default value and must be given a value before they can
be used.

• See example: LocalVars.java

LocalVars.java

5-29

Returning a Value from a Method

• Data can be passed into a method by way of the
parameter variables. Data may also be returned
from a method, back to the statement that called
it.

int num = Integer.parseInt("700");

• The string “700” is passed into the parseInt
method.

• The int value 700 is returned from the method
and assigned to the num variable.

5-30

Defining a Value-Returning Method

public static int sum(int num1, int num2)

{

int result;

result = num1 + num2;

return result;

}

Return type

This expression must be of the

same data type as the return type

The return statement

causes the method to end

execution and it returns a

value back to the

statement that called the

method.

The call statement can be:

int value2 = 40, result = 100;

result = result + sum(20, value2);

The call statement can be:

int value2 = 40, result = 100;

result = sum(20, value2);//???

5-31

Calling a Value-Returning Method

total = sum(value1, value2);

public static int sum(int num1, int num2)

{

int result;

result = num1 + num2;

return result;

}

20 40

60

return num1 + num2;

package methodCallValueRetn05_02_02PK;

public class MethodCallValueReturn05_02_02 {
public static void main(String[] args) {

int value1 = 20, value2 = 40;
System.out.println("sum is " +

sum(value1, value2));
int total = sum(value1, value2);
System.out.println("total is " + total);

}
public static int sum(int num1, int num2) {

int result;
result = num1 + num2;
return result;

}
} sum is 60

total is 60

20

40

value1 value2

20

value1 value2

40

num1 num2

60

result

package methodCallValueRetn05_02_02PK;

public class MethodCallValueReturn05_02_02 {
public static void main(String[] args) {

int value1 = 20, value2 = 40, value3 = 30, value4 = 50;
System.out.println("sum is " + sum(value1, value2));
int total = sum(value1, value2);
System.out.println("total is " + total);
sumTotal(value3, value4);
System.out.println("T02: result is " + result);

}
public static int sum(int num1, int num2) {

int result;
result = num1 + num2;
return result;

}
public static void sumTotal(int num1, int num2) {

int result;
result = num1 + num2;
System.out.println("T01: result is " + result);

}
}

sum is 60
total is 60
T01: result is 80

5-34

@return Tag in Documentation

Comments

• You can provide a description of the return value in
your documentation comments by using the @return
tag.

• General format

@return Description

• See example: ValueReturn.java

• The @return tag in a method’s documentation
comment must appear after the general description.
The description can span several lines.

ValueReturn.java

5-35

Returning a booleanValue
• Sometimes we need to write methods to test

arguments for validity and return true or false
public static boolean isValid(int number)

{

boolean status;

if(number >= 1 && number <= 100)

status = true;

else

status = false;

return status;

}

Calling code:
int value = 20;

If(isValid(value))

System.out.println("The value is within range");

else

System.out.println("The value is out of range");

5-36

Returning a Reference to a String

Object
customerName = fullName("John", "Martin");

public static String fullName(String first, String last)

{

String name;

name = first + " " + last;

return name;

}

See example:

ReturnString.java

address

“John Martin”

Local variable name holds

the reference to the object.

The return statement sends

a copy of the reference

back to the call statement

and it is stored in
customerName.

ReturnString.java

public class MethodCallRetString05_02_03 {

public static void main(String[] args) {
String customerName;
customerName = fullName("John", "Martin");
String str = "The customer's name is %s.\n";
System.out.printf(str, customerName);

}

public static String fullName(String first,
String last)

{
String name;
name = first + " " + last;
System.out.printf("T01: Customer's name " +

"is %s.\n", name);
return name;

}
}

T01: Customer's name is John Martin.
The customer's name is John Martin.

5-38

Problem Solving with Methods

• A large, complex problem can be solved a piece at a
time by methods.

• The process of breaking a problem down into smaller
pieces is called functional decomposition.

• See example: SalesReport.java

• If a method calls another method that has a throws
clause in its header, then the calling method should
have the same throws clause.

SalesReport.java

Adding a throws Clause to the Method Header

Suppose we create a PrintWriter object and pass the

name of a file to its constructor.
import java.util.Scanner;

import java.io*’

public class FileWriteDemo {

public static void main(String[] args) throws IOException {

Scanner kb = new Scanner(System.in);

System.out.print(“Enter the filename: ”);

String filename = kb.nextLine();

//open the file.

PrinterWriter outputFile = New PrintWriter(filename);

//write the name to the file

outputFile.println(“Thomas Jefferson.”);

//close the file

outputFile.close();

}

}

Adding a throws Clause to the Method Header

Suppose we create a PrintWriter object and pass the name

of a file to its constructor.

The PrintWriter objects attempts to create the file, but

unexpectedly the disk is full and the file cannot be created.

Obviously, the program cannot continue until this situation

has been dealt with, so an exception is thrown, which

causes the program to suspend normal execution.

When an unexpected event occurs in a Java program, it is

said that the program throws an exception.

We can think of an exception as a signal indicating that the

program cannot continue until the unexpected even has

been dealt with.

Adding a throws Clause to the Method Header

When an exception is thrown, the method that is executing

must either deal with the exception, or throw it again.

If the main method throws an exception, the program halts

and an error message is displayed.

Because PrintWriter objects are capable of throwing

exceptions, we must either write code that deals with the

possible exceptions (in Chapter 10), or we simply allow our

methods to rethrow the exceptions when they occur.

To allow a method to rethrow an exception that has not

been dealt with, we simply write a throws clause in the

method header.

Adding a throws Clause to the Method Header

To allow a method to rethrow an exception that has not been

dealt with, we simply write a throws clause in the method

header. An example is:

public static void main(String[] args) throws IOException

{

….

}

This header indicates that the main method is capable of

throwing an exception of the IOException type. This is the

type of exception that PrintWriter objects are capable of

throwing. So, any method that uses PrintWriter objects, and

does not respond to their exceptions, must have this throws

clause listed in its header.

Adding a throws Clause to the Method Header

In addition, any method that calls a method that uses a

PrintWriter object should have a throws IOException clause

in its header.

For example, suppose the main method does not perform any

file operations, but calls a method named buildFile that opens

a file and write data to it.

Both the buildFile and main methods should have a throws

IOException clause in their headers. Otherwise, a compiler

error will occur.

5-44

Calling Methods that Throw Exceptions

• Note that the main and getTotalSales methods
in SalesReport.java have a throws IOException
clause.

• All methods that use a Scanner object to open a file
must throw or handle IOException.

• You will learn how to handle exceptions in Chapter
12.

• For now, understand that Java required any method
that interacts with an external entity, such as the file
system to either throw an exception to be handles
elsewhere in your application or to handle the
exception locally.

import java.util.Scanner;

import javax.swing.JOptionPane;

/**

* A program prompts user to enter their first and last name.

* Then display the user's name in question.

* @author apeng

*/

public class methodCall {

public static void main(String[] args) {

String name, task, sFormat;

int length;

String gtitle = "Your First and Last Name";

task = "Enter first and last name: ";

name = inputName(task, gtitle); //a method call

length = name.length() - 1;

sFormat = String.format("Is your name, %s of length %d?\n", name, length);

displayName(sFormat, gtitle, length); //a method call

System.exit(0);

} //end of main() method

public static String inputName(String func, String title) { … } //end of inputName

public static void displayName(String str, String title) { … } //end of displayName

}//end of class methodCall

/**

*

* @param func

* @param title

* @return

*/

public static String inputName(String func, String title)

{

String nStr, fName, sName;

nStr = JOptionPane.showInputDialog(null, func, title,

JOptionPane.QUESTION_MESSAGE);

Scanner splitter = new Scanner(nStr);

fName = splitter.next();

sName = splitter.next();

nStr = fName + " " + sName;

return nStr;

}//end of inputName

/**

*

* @param str

* @param title

*/

public static void displayName(String str, String title, int len)

{

System.out.println("From displayinConsole:");

System.out.print(str);

System.out.print(str + "Confirmed name's length is " + len);

JOptionPane.showMessageDialog(null, str, title,

JOptionPane.INFORMATION_MESSAGE);

} //end displayName

From displayinConsole:
Is your name, Davidson Hammonrick of length 18?
Confirmed name's length is 18

The program outputs:

