Chapter 3 — Boolean Algebra
and Digital Logic

CS 271 Computer Architecture
Purdue University Fort Wayne

Objectives

Understand the relationship between Boolean

logic and digital computer circuits.

Learn how to design simple logic circuits.

Understand how digital circuits work together to
form complex computer systems.

Introduction

In the latter 19t century, George Boole suggested

that logical thought could be represented through
mathematical equations.

Boolean algebra is everywhere

https://www.google.com/doodles/george-booles-

200th-birthday

x AND y x XOR y xORy‘NOTy NOT x

https://www.google.com/doodles/george-booles-200th-birthday

Application of Boolean Algebra

Digital circuit

Google search

Database (SQL)

Programming

An Example on Programming

while (((A && B) || (A && IB)) || 1A)

{
// do something

»

3.2 Boolean Algebra

Boolean algebra is a mathematical system for
manipulating variables that can have one of two
values.

m In formal logic, these values are “true” and
“false”

B In digital systems, these values are
“on”/Yoff,” “high”/“low,” or “1”/"0".

B So, it is perfect for binary number systems

Boolean expressions are created to operate

Boolean variables.

B Common Boolean operators include AND, OR,
and NOT.

Boolean Algebra

T

he function of Boolean operator

can be completely described
using a Truth Table.

T

O

ne truth tables of the Boolean
nerators AND and OR are

S

T

nown on the right.
he AND operator is also known

as the Boolean product «.”. The

OR operator is the Boolean sum
“‘I‘”_

X AND Y
X Y XY
O O 0
O 1 O
1 O o)
1 1 1

X ORY
X Y X+¥
O O 0
O 1 1
1 O 1
1 1 1

Boolean NOT

The truth table of the

Boolean NOT operator is
shown on the right.

The NOT operation is
most often designated by
an overbar “7.

B Some books use the prime
mark () or the “elbow” (7),

for instead.

NOT X
X X
0 1
1 0

Boolean Function

A Boolean function has:

At least one Boolean variable,
At least one Boolean operator, and
At least one input from the set of {0,1}.

It produces an output that is a member of the

set {0,1} — Either O or 1.

Now you know why the binary numbering system
is so handy for digital systems.

Boolean Algebra

Let’s look at a truth table F(x,y,2) = xz+y

for the following Boolean T e
. X vy z Z Xz| xXz+y

fgnctlon shown on the o 0 0o L o 0
right. : o o1 |0 o 0
_ p— O 1 O 1 0 1
Fx,y,z) = xzty 0 1 1 O o0 1
To valuate the Boolean 1 0 O 1 1 1
function easier, the truth 10 1 0
i 1 1 O 1 1 1
table contains a extra 1 1 1 1o o 1

-
_

columns (shaded) to hold
the evaluations of partial
function.

10

Rules Of Precedence

Arithmetic has its rules of F(x,Y,2) = X2Z+y
4 A

precedence x v z (I ::v
B Like arithmetic, Boolean 0 0 O 1 0 0
operations follow the rules 0o 0 1 O © 0
of precedence (priority): 0O 1 O 1 0 1
0 1 1 0O O 1
B NOT operator > AND 1 0 0o 1 1 1
operator > OR operator . 1 0 1 0o o0 0
: : 1 1 0 1 1 1
This explains why we 111 |0 o 1

chose the shaded patrtial \

l

function In that order In
the table. Rules Of Precedence

11

Use Boolean Algebra in Circuit
Design

Digital circuit designer always like achieve the following
goals:
B Cheaper to produce

B Consume less power
B run faster

How to do 1it? -- We know that:

B Computers contain circuits that implement Boolean functions -
Boolean functions can express circuits

B |f we can simplify a Boolean function, that express a circuit, we can
archive the above goals

We always can reduce a Boolean function to its

simplest form by using a number of Boolean laws

can help us do so. 12

Boolean Algebra Laws

Most Boolean algebra laws have either an AND

(product) form or an OR (sum) form. We give the

laws with both forms.

B Since the laws are always true, so X (and Y) could be

either O or 1
Identity AND OR
Name Form Form
Identity Law 1x =x O +x=x
Null Law Ox = l1+x=1
Idempotent Law | xx =X X+xXx=X
Inverse Law xx =0 x+x=1

13

Boolean Algebra Laws ('Cont)

The second group of Boolean laws should be

familiar to you from your study of algebra:

Identity AND OR
Name Form Form
Commutative Law Xy = yX X+y = y+x
Associative Law (xy)z =x(yz) (x+y)+z=x+ (y+2z)
Distributive Law x+tyz = (x+y) (x+z) | x(y+z) = xy+x=z

14

Boolean Algebra Laws ('Cont)

The last group of Boolean laws are perhaps the
most useful.

B If you have studied set theory or formal logic, these laws
should be familiar to you.

Identity AND OR
Name Form Form
Absorption Law x(x+y)=x X+ Xy =X
DeMorgan's Law (xy) =X + v (x+y) = XYy
Double —
Complement Law (x) =x

15

DeMorgan's law

DeMorgan’s law provides an easy way of finding the
negation (complement) of a Boolean function.

DeMorgan’s law states:
N [
(xy) =x+y and (x+y)=xy @

0 Example More Examples?
B [will come to school tomorrow if
O (A) my car is working, and
O (B) it won't be snowing -*

— ® I won’t come to school tomorrow if 1
@
®
16

O (A) my car is not working, or
O (B) it will snowing

DeMorgan's Law

DeMorgan’s law can be extended to any number
of variables.

B Replace each variable by its negation (complement)

B Change all ANDs to ORs and all ORs to ANDs.

Let's say F (X, Y, Z) is the following, what is F ?

F(X,Y,7)=(XY)+ (XY)+ (XZ)

17

Simplify Boolean function

[l Let's use Boolean laws to simplify:

as follows:

F(X,Y,7)=(X+Y) (X+Y) (XZ)

(X + YY) (X + ¥)|(x2)

G Ly e T (§+z3g|

(XX + XY + ¥X + YY) [(X +
((X + YY) +X(Y +Y¥)) (X + 2)
((X+0) +X(1)) (X + Z)
X(X + Z)

XX + XZ

0 + X2

X%

DeMorgan's Law
Double complement Law

'| Distributive Law

Commutative and Distributive Laws
Inverse Law

Idempotent and Identity Laws

Distributive Law
Inverse Law

Identity Law

18

Logic simplification steps

Apply De Morgan’s theorems

Expanding out parenthesis

Find the common factors

Popular rules used:
X+XY=X X+X=X, XX=X
XY+XY=X X+0=X, X+1=1
X+XY=X+Y X0=0 X1=X

19

orane 2XAMPle (1)

m Apply De Morgan’s theorem
WXYZ W+X+Y+Z

(A+B+C)D

AB+CD+EF

20

IIIIIIIIII

FORT WAYNE

Example (2)

(AB(C+BD)+AB)C

21

IIIIIIIIII

FORT WAYNE

Example (3)

ABC+ABC+ABC+ABC+ABC

22

IIIIIIIIII

FORT WAYNE

Example (4)

(AB+AC)+ABC

23

IIIIIIIIII

FORT WAYNE

Example (5)

AC+ABC+ABCD+ABD

24

IIIIIIIIII

FORT WAYNE

Example (6)

(A+B+C)(B+C)(A+B)

25

An Example on Programming

while (((A && B) || (A && IB)) || 1A)

{
// do something

hile (1)

~ 2 Il Y

// do something

26

Boolean Algebra

Through our exercises in simplifying Boolean

expressions, we see that there are 1+ ways of
stating the same Boolean expression.

B These “"synonymous” forms are logically equivalent.

B Logically equivalent expressions could produce
confusions

(X+Y) (X+Y) (XZ) =XZ

In order to eliminate the confusion, designers

express Boolean express in unified and
standardized form, called canonical form.

27

Boolean Algebra

There are two canonical forms for Boolean expressions:

sum-of-products and product-of-sums.
B Boolean product (x) 2AND -logical
conjunction operator

B Boolean sum (+) 2 OR —>logical conjunction
operator

In the sum-of-products form, ANDed variables are
ORed together.

B For example: F(X,y,z)z Xy + xz + yz

In the product-of-sums form, ORed variables are

ANDed together:
B Forexample:F (x, vy, z)=(x+y) (x+z) (y+2)

28

Minterm and Maxterm

Some books uses sum-of-minterms form and
product-of-maxterms form

B A minterm is a logical expression of n
variables that employs only the complement
operator and the product operator.

[0 For example, abe, ab'c and abe' are 3 minterms
for a Boolean function of the three variables a, b,

and c.
B A maxterm is a logical expression of n
variables that employs only the complement
operator and the sum operator.

29

Create Canonical Form Via
Truth Table

L1 Itis easy to convert a function F(x,y,2z) = xz+y
to sum-of-products form from _
its truth table. * Y z | x2vY
[1 We only interested in the 8 8 2 8
production of the inputs which 0 1 0 1
yieldS TRUE (:1) 0O 1 1 1
B We first highlight the lines that 1 0 O 1
resultin 1. 1 0 1 0
B Then, we group them together 1 1 0O 1
with OR. 1 1 1 1

30

Create Canonical Form Via Truth

Table (‘Cont)

Look at this example:
F(x,y,2) = xz+y
=(xyz) + (xyz) + (xyz)
+(xyz) + (xyz) (XyZ)
(xyz)
(xyz)
It may not the simplest ((g;z;

form. But, it is the standard
sum-of-products canonical

F(x,y,z) = xz+y
X vy z XZ+y
O 0 O 0
O 0 1 0
0O 1 O 1
O 1 1 1
1 O O 1
1 0 1 0]

1 1 O 1
1 1 1 1

form

31

Exercise

Convert ABC+A'BC+AB'C+A'B'C+ABC!
to its simplest form

ABC+A'BC+AB'C+A'B'C+ABC'= BC(A+A') + B'C(A+A') + ABC'
BC1l +B'C1 + ABC'

C(B+B') + ABC'

C + ABC'

C + AB

32

Exercise

Convert AB + C to the sum-of-products
form

AB = AB 1 By Thd

= AB (C + C") By Th 15

= ABC + ABC' By distributive law

= CBA + C'BA By assocliative law

C = c 1 By Thd

= C (A + A") By Thlb

= CA + CA' By distributive law
= CA 1l + CA'l By Thi4

= CA (B +B') + CA" (B + B') By Thlb

= CAB + CAB' + CA'B + CA'B' By distributive law
= CBA + CBA' + CB'A + CB'A' By associlative law
AB+C = (CBA + C'BA) + (CBA + CBA' + CB'A + CB'A'")

= CBA + CBA' + CB'A + CB'A" + C'BA

33

3.3 Logic Gates

We’ve seen Boolean functions in abstract terms.

You may still ask:

B How could Boolean function be used in
computer?

In reality, Boolean functions are implemented as digital
circuits, which called Logic Gates.

A logic gate is an electronic device that produces a

result based on input values.

B A logic gate may contain multiple transistors, but, we
think them as one integrated unit.

B Integrated circuits (IC) contain collections of gates,
for a particular purpose.

34

AND, OR, and NOT Gates

Three simplest gates are the AND, OR, and NOT

gates. “inversion
ubble”
K XY X X+Y -
X X
O DR el
X AND Y X OR Y BT
X Y XY X Y X+Y v«
0 0 0 0 0 0
0 1 0 0 1 1 0 1
1 0 0O 1 0 1 10
1 1 1 1 1 1

Their symbol and their truth tables are listed above.

35

NAND and NOR Gates

NAND and NOR

are two additional
gates.

B Their symbols and
truth tables are
shown on the
right.

NAND = NOT

AND

NOR = NOT OR

R E OO W

X NAND ¥

Y X NAND ¥
0 1

1 1

0 1

1 0

X NOR X

Y X NOR ¥
0 1

1 0

0 0

1 0

x —C
Y —Q

36

The Application of NAND and

NOR Gates

NAND and NOR are

X

known as universal
gates! — gates of all
gates

B They are inexpensive
to produce

X
Y

X

Boolean function can
be constructed using
only NAND or only
NOR gates.

Y

NOT X

B

X AND Y

More important; Any XORY

37

Multiple Inputs and Outputs of
Gates

The gates could have multiple inputs and/or multiple
outputs.

B The second output can be provided as the
complement of the first output.

B We'll see more integrated circuits, which have
multiple inputs/outputs.

Y Yy —— _

39

XOR Gates

Another very useful gate is the Exclusive OR (XOR)

gate.

The output of the XOR operation is true (1) only when

the values of inputs are different.

X XOR ¥

X Y X0YX

0O O 0 X X0y
0 1 1 o

1 0 1

1 1 0

The symbol for XOR is @

40

Parity generator / checker

Electrical noise in the transmission of
binary information can cause errors

Parity can detect these types of
errors

Parity systems

B Odd parity

B Even parity

Add a bit to the binary information

41

Even parity check

Even parity check

Example: input: A(7...0), Output:

even_parity bit

B If there are even numbers of 1 in A,
even_parity = '0’,

B If there are odd numbers of 1 in A,
even_parity = ‘1’

e.g., A="10100001",
even_parity = ‘1’
A="10100011",

EVEII_palit, =‘g’

42

Odd parity check

Odd parity check

Example: input: A(7...0), Output:

odd_parity bit

B If there are odd numbers of 1 in A,
odd_parity = ‘0,

B If there are even numbers of 1 in A,
odd_parity = '1’

e.g., A="10100001",
odd_parity = '0’

A="10100011",
odd_parity = '1’

43

Odd-parity generator/checker
system

HEEE T

LI NS

:" (Parity bit) ,
Parity ! Parity : Error
E generator checker : > indicator
|
Transmitting Receiving
device device

44

Error detection

[ransmitting end: The parity generator

creates the parity bit.

Receiving end: The parity checker

determines if the parity is correct.

e.g., odd-parity check of 8-bit data

B Datasend: 10111101 + 1
B Data received: 101011011

odd-parity check: The number of 1 is even —
error

45

Discussion point

What are disadvantages of even parity

(or odd parity) check to detect
transmission errors? Consider the
following case:

B Protocol: 8-bit plus one even parity bit
B Information sent: 11011100 + 1
B Information received: 10010100 + 1

[he parity generator/checker system

detects only errors that occur to 1 bit.

46

Parity check using XOR

N-1 XOR gates can be cascaded to form a
circuit with N inputs and a single output

— even-parity circuit.
B Example: N=8, Inputs=10111101, even-parity
output
=((1e0)o(1d1))d((121)d(001))=0
Odd-parity check circuit: even-parity check
circuit =Inverted=>» Odd-parity check

B Example: N=8, Inputs=10111101, odd-parity
output

=NOT(((1®0)a(101))®((1®1)e(0®1)))=1 .

Binary comparators

[0 A one-bit comparator is the same as the XOR

4-bit comparator

A0 DIFFO
U1A
Al DIFFA1
1-bit comparator > ijB v2A) >—or

1/4 7486 u1c

1

A0 a A3 DIFF3
o DIFF

Bﬂw BsiDi

U1 u1bD

DFo1

y

y

uze

¢ A n-bit comparator determines if two n-bit signal vectors
are equal:

EQ(X[L:n],Y[L:n])=(X1=Y1)(X2=Y2)....(Xn=Yn)

Two Types of Logic Circuits

Combinational Logic Circuit (CLC)

B Good at designing computational
components in the CPU, such as ALU

Sequential Logic Circuit (SLC)

B Good at designing memory components,
such as registers and memory

49

Logic Gates

We use the combination of gates to implement
Boolean functions.

The circuit below implements the Boolean function:
F(X,Y,Z) = X+YZ

: Di_D X+Y¥Z

Z

50

3.5 Combinational =) =
Circuits e

The circuit implements the Boolean function:
F(X,Y,Z) = X+YZ
The major characteristics of this kind of circuits:

B The circuit produces an output almost immediately
after the inputs are given.

This kind of circuits are called combinational
logic circuit (CLC).

B In a later section, we will explore circuits
where this is not the case.

51

Simplify CLC via Boolean
Algebra

As | have mentioned previously:

B The simpler that we can express a Boolean function,
the smaller the circuit will be constructed.

B Simpler circuits are cheaper > consume less
power - run faster than complex circuits.

We always want to reduce a Boolean function to its
simplest form.

It is Iimportant to simplify combinational logic circuit
via Boolean algebra laws

52

Simplify CLC via Boo
Algebra

Look at this exampIeO
A O

By

=T
[-

B+ALC «

Can we simplify
this circuit? If
yes, then how?

AB + A{B + C) + B(B + C)
=HB + AB + AC + BB + BC

=B + AB + AC + B + BC
=AB + AC + B + BC

=AB + AC + B
= B+AC

53

Steps to Simplify a Complex
Circuit

From this example, we know that the
basic steps to simplify a complex
circuit is the following:

B Stepl: Express a logical circuit into a
Boolean expression

B Step2: Simplify the Boolean expression
as much as possible

B Step3: Re-express the simplified
expression back to a circuit.

54

Example of Simplify a Logical

Circuit

A

Simplify the following circuit

1>

) e

4}

D

55

Example of Simplify a Logical

Circuit

B Stepl: Express a logical circuit into a
Boolean expression

. —ﬁ\‘ LB
_

Q = AB + BC(B+C)
B+C
BC (B+C)

56

Example of Simplify a Logical
Circuit

B Step2: Simplify the Boolean expression
as much as possible

AB + BC(B + C)
l Distributing terms

AB + BBC + BCC
Applying identity a8 = A
l to 2nd and 3rd terms

LE + BC + BC
Applying identity 2 + A = A
l to 2nd and 3rd terms

AB + BC
l Factoring B out of terms

BE(A + C)

Example of Simplify a Logical
Circuit

B Step3: Re-express the simplified
expression back to a circuit

My
. Q0 = BlA+C)
B

Obviously, the simplified circuit is much
simpler than the original one

58

Combinational Circuits: Half
Adder

Combinational logic circuits
can be used to create many
useful devices.

Half Adder: Compute the
sum of two bits.

Let’'s gain some insight of
how to construct a half
adder by looking at its truth
table on the right.

Inputs Outputs

Sum Carry

0

R R OO X
H ORLr O K
O R KB O

o)
o)
1

59

Combinational Circuits: Half
Adder (‘Cont)

It consists two gates:
B a XOR gate -- the sum bit
B a AND gate -- the carry bit

Carry

Sum

Inputs
X Y
O O
O 1
1 O
1 1

Outputs
(Sum] Earrf\
0) 0
1 0
1 0
0) 1

J \ J

60

Combinational Circuits: Full
Adder

We can extend the half Inputs Outputs

adder to a full adder, A —
which includes an In Sum Out

additional carry bit
(Carry In)

0

The truth table for a full

adder is shown on the
right.

R R RrEROOOO N
PR OORROO K

[I—‘OI—'OI—‘OI—'O
HOORORKRRDO
HREBEOROO

61

Half Adder - Full Adder ?

How can we extend the e

Outputs

half adder to a full Carry e
adder? X Y In Sum Out
0 O 0 0 0

X ® A Sum 0 0 1 1 0
Y o ,)§ > 0o 1 0 1 0
0o 1 1 0 1

1 0 0 1 0

1 0 1 0 1

\l/ 1 1 0 0 1
Carry 1 1 1 1 1

Hint: First calculate X + Y by a half adder,
then the sum adds the carry in bit, then...... 62

>

The Full Adder

Carry In Inputs Outputs
/ \ \ Carry Carry
. A sSum X X In Sum Out
\ I—
!))) . ,D 0 0 0 0 0
’ 0O O 1 1 0
0 1 0 1 0
_/ 0 1 1 0 1
\ / \ / 1 0 0 1 0
1 1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
—
Carry Out

63

Ripple-carry Adder

Just as we combined half adders to construct a
full adder, full adders can be connected In series.

The carry bit “ripples” from one adder to the next.
This configuration is called a ripple-carry adder.

Y5 X5 ¥, X ¥, %

C:2 Cl C0

C
15
FA (€ — —— —| FA [€—| FA |4 C3rryin

Carry Out

This iIs the full adder for two 16 bits!

64

Decoder

Decoder Is another important combinational circulit.

It iIs used to select a memory location according a

address in binary form

B Application: given a memory address - Obtain its
memory content.

Address decoder with n inputs can select one out

of 2" locations.

—>
———> >

Decc'?der —>

n Inputs — = == « 27 Outputs
—>

YVY

Address Memory

Lines
65

Decoder

(> Input Output
2? 2! 2 0 | 2 3
@ 0 0 0 1 0 0 0
0 0 | 0 1 0 0
|—< :) 0 1 0 0 0 | 0
[, _LSB 0 1 | 0 0 0 |
@ | 0 0 0 0 0 0
BCD | 1 = ooder | 0 | 0 0 0 0
input | | | 1 I 0 0 0 0 0
, MsB @ 1 1 I 0 0 0 0

\:I /
3 X Selected
. decimal
output (0111=7)

!

A 2-t0-4 Decoder

1Y

Address:
01

This I1s a 2-to-4 decoder :

o

—

Only this piece of

Memory

memory will be
chosen/accessed

67

JO/M = LOW

for memory access

RD

I0/M

8085A
MiCroprocessor

Address)
lines

A LOW RD or WR
satisfies F5

74HCT
138

— To
memory
I ICs

10 42,41, 40

0

O—— Memory bank 0
O—— Memory bank 1
O—— Memory bank 2

O—— Memory bank 3

O—— Memory bank 4
O—— Memory bank 5
O—— Memory bank 6

O—— Memory bank 7

[I I

AIS ‘d‘]-il AIE AIEA]I Al{l A‘) AH ‘d‘? A(j AS A4 A3 AE A] ‘4(}

Must be zero to J S

satisfy E,

Used to
drive
Ay-Ay

v

Can be any value
000H to FFFH (used to define
location within selected bank)

74138 as a memory address decoder

Multiplexer

A multiplexer works just the
opposite to a decoder.

It selects a single value

0

1,

I,—>» Multiplexer

Output

(mrixy |

Alows|N

from multiple inputs. fa >

The chosen input for output
IS determined by the value
of the multiplexer’s control
lines.

To select from N inputs,

log,n control lines are
required.

I

S1 Sy
Control lines

1 0 Address

69

>

A four-line multiplexer

Table 8-5 Data Select Input Codes
D, " for Figure 8§30
Data P ¥ i Data Select
Inputs | D, E‘Y— output Control Inputs it Tt
D
e o S, So Selected
0 0 D,
0 1 D,
Sl S()] O D2
1 1 D;

Data select control
input determines

WG GO L 13 What is the logic equation for
connected to the
the output Y =7

output

Combinational Circuits

This is a 4-to-1 multiplexer.

0 Sl L

which input is transferred to the output? 71

A Simple Two-Bit ALU

Half-
Adder

ﬂi}overﬂow

Output

Co

Cy

Full-
Adder

3.6 Sequential Logic Circuits (SLC)

[1 Combinational logic circuits are perfect for those
applications when a Boolean function be immediately
evaluated, given the current inputs.

B Examples: multiplexer, ripple-carry adder, shifter, etc

[1 However, sometimes, we need a kind of circuits that
change value by considering the current inputs and its
current state.

B Memory is such an example that requires to remember
the current state

B The circuits need to “remember” their states.

[1 Sequential logic circuits (SLC) provide this functionality.

75

How to “remember”?

[hink about the states in your own
life-time

B 1 years old, blabla...

B 2 years old, blabla...

B 3 years old, bla

LT

76

Essential Component of Sequential
Circuits: Clocks

As the name implies, sequential logic circuits require a

means by which events can be sequenced.

The change of states is triggered by the clock.

B The “clock” is a special circuit that sends
electrical pulses to a sequential logic circuit.

Clocks produce electrical waveforms constantly, such

as the one shown below.

77

When Change Its State?

State changes occur in sequential circuits, only
when the clock ticks.

A sequential logic circuits could changes it state

B Either, at the rising/falling edge of the clock pulse

B Or, when the clock pulse reaches its highest/lowest level.

Falling @
Rising Edge
Edge \

78

Edge-triggered Or Level-triggered?

SLC that changes its state at the rising edge, or the

falling edge of the clock pulse is called Edge-
triggered SLC.

SLC that changes its state when the clock voltage

reaches to its highest or lowest level are called
Level-triggered SLC.

Edge-triggered SLC Level-triggered SLC

\—_z/— — / —
N T

79

Latch And Flip-flop

latch and flip-flop are two kinds of SLCs,
which are used to construct memory

B A latch is level-triggered

B A flip-flop is edge-triggered

[0 Which one depends on the length of the clock
pulse?

B Latch, or
m flip-flop?

80

Essential Component Of
Sequential Circuits: Feedback

The most important design mechanism of SLC is

Feedback

B Feedback can retain the state of sequential circuits

Feedback in digital circuits occurs when an

output is looped back as an input.

A simple example of this concept is shown

below.

B If Qis O it will always be O, ifitis 1, it will
always be 1. --- The motivation of Memory!

[lo .

SR Flip-flop

You can see how feedback works by examining

the most basic sequential logic components, the
SR flip-flop.

B The “SR” stands for set/reset.

The internals of an SR flip-flop are shown below,

along with its block diagram. /1 Clock Driven
S _
Q S [Q
/
NG
= Q
R Q

82

Behavior Of An SR Flip-flop

The behavior of an SR flip-flop is illustrated in the

following truth table.

B Let's denote Q(t) as the value of the output at time t, and
B Denote Q(t+1) is the value of Q at time t+1.

6 S R Q(t+1)
0 0 @(t) (no change)
0 1 O (reset to 0)
1 0 1l (set to 1)

Q 1 1 undefined

83

SR Flip-flop Truth Table

We consider Q(t), its

current output, as the
third input for SR flip-
flop, besides S and R.

The truth table for this

circuit, as shown on the
right.

When both S and R are

1, the SR flip-flop is in
forbidden state

Retain its Change its
original value value
Present Nex\t
State Stat
S R Q(t) Q(t+1
ro 0 N VO 0 h Q(t+1)
o o0) W 1) =Q(t)
0 1 0_> o) 0
L 0O 1) 1 :0=:
1 0 0 5 1 1
L1 0) 1 1
(1 1 0 undefined}
1 1 1 undefined

\

forbidden state

Clocked SR Flip-flop

S ——
Qf
clock
Q
R
" 1 i
0 5
1 :
R :
0 |
1 :
Q :
0 —
Clock 1 |
0

85

JK Flip-flop

One limitation of SR flip-flop is that, when S and
R are both 1, the output is undefined.

B This is not nice because it wastes a state

Therefore, SR flip-flop can be modified to provide
a stable state when both S and R inputs are 1.

* This modified flip-flop is
called a JK flip-flop, J o a

shown on the right. >C
- The “JK" is in honor of
Jack Kilby.

86

3.6 Sequential Circuits

On the right, we see
how an SR flip-flop can
be modified to create a
JK flip-flop.

The truth table
Indicates that the flip-
flop Is stable for all
Inputs.

B When Jand K are
both 1, Q(t+1) = =Q(t)

R R OO §

L

K
0
1
0
1

-

D—
—

Q(t+1)

Q(t) (no change)
0 (reset to 0)
l (set to 1)

Q(t)

87

An Example

Let’'s say a JK flip-flop is

rising-edge|triggered

At t0, Q(t) = 0. What will be the changes of the value of

Q over time?

\I

Clock

gy

™\

I
|
|
|
|
I
l
I
I
K I

Q

T

JK flip-flop

* Any time other than
the rising edge won’t
trigger this JK flip-flop
to change its state

Q(t+1)

K

0 Q(t) (no change)
1 0 (reset to 0)

0 1l (set to 1)

1 Q(t) 88

= = OO

D Flip-flop

Another modification of the SR flip-flop is the D
flip-flop, shown below with its truth table.

You will notice that the output of the flip-flop
remains the same during subsequent clock

pulses. The output changes only when the value
of D changes.

D S Q | — D Q(t+1)
—>C B 0 0
Q p——— 1 1

—{>o0—r

89

D Flip-flop

The D flip-flop is the fundamental circuit of

computer memory.

m D flip-flop and its truth table are
illustrated as below.

—1p q |I— D Q(t+1)

0 0
~ 1 1

90

3.6 Sequential Circuits

Sequential circuits are used anytime that we
need to design a “stateful” application.

B A stateful application is one where the next state of the

machine depends on the current state of the machine
and the input.

A stateful application requires both combinational
and sequential logic.

The following slides provide several examples of

circuits that fall into this category.

Can you think of

others? o1

3.6 Sequential Circuits

o Thl_s, |IIu§trat|on sh_ovx_/s a In, — out,
4-bit register consisting
. . >
of D flip-flops. You will
usually see its block . — cut
. . n
diagram (below) instead. . '
r—]>
Ing — — Out,
In, — Register —— Out, In2 D @Q Out2
In, — —— Out, —1
Ing — —— Out,
In, D © Out3
A larger memory configuration
is shown on the next slide. — Clock GE -
T,

92

3.6 4X3 Memory

=J NI

JEr]] E5] | ﬁfﬁl
S — :
J_”J A e ™
L] L] LS
Iny — .
e =l T O D Df“Dj Read the
—‘ . [": ri ' content
Write [] from the
the E_E' 91 FE' 9, memory
content .
o ﬁ‘;‘;‘:;i:’ Eﬂ o @‘;‘;‘:;if ﬁ‘;‘;‘:;‘;f
Y | B
~— nnn, | LW s (0,0); (0,1); (1,0); (1,1);
- ’ 1 Choose a word, Word, 93

(O<=i<=3)

3.6 Sequential Circuits

[1 A binary counter is

another example of a ‘ B

Enable

sequential circulit.

[0 The low-order bit is l U

complemented at

each clock pulse.
[1 Whenever it changes

from O to 1, the next
bit is complemented,

and so on through the

other flip-flops. Erere

Synchronous MOD-16 counter

94

3.7 Designing Circuits

Digital designers rely on specialized software

to create efficient circuits.

B Thus, software is an enabler for the
construction of better hardware.

Of course, software is in reality a collection of

algorithms that could just as well be
Implemented in hardware.

B Recall the Principle of Equivalence of
Hardware and Software.

95

Designing Circuits

When we need to implement a simple, specialized

algorithm and its execution speed must be as fast
as possible, a hardware solution is often preferred.

This is the idea behind embedded systems, which
are small special-purpose computers that we find in
many everyday things.

Embedded systems require special programming

that demands an understanding of the operation of
digital circuits, the basics of which you have
learned In this chapter.

96

Chapter 3 Conclusion

Computers are implementations of Boolean

logic.

Boolean functions are completely described by

truth tables.

Logic gates are small circuits that implement

Boolean operators.

The basic gates are AND, OR, and NOT.

B The XOR gate is very useful in parity
checkers and adders.

The “universal gates™ are NOR and NAND.

97

Chapter 3 Conclusion

Computer circuits consist of combinational logic

circuits and sequential logic circulits.

Combinational circuits produce outputs almost

Immediately when their inputs change.

Sequential circuits require clocks to control
their changes of state.

The basic sequential circuit unit is the flip-flop:

The behaviors of the SR, JK, and D flip-flops
are the most important to know.

98

End of Chapter 3

99

