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Objectives

 Understand the relationship between Boolean 

logic and digital computer circuits.

 Learn how to design simple logic circuits.

 Understand how digital circuits work together to 

form complex computer systems.
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 In the latter 19th century, George Boole suggested 

that logical thought could be represented through 

mathematical equations.

 Boolean algebra is everywhere

 https://www.google.com/doodles/george-booles-

200th-birthday

Introduction
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 Digital circuit

 Google search

 Database (SQL)

 Programming

 ……

Application of Boolean Algebra
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An Example on Programming

while  (((A && B) || (A && !B)) || !A)

{

// do something

}
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3.2 Boolean Algebra

 Boolean algebra is a mathematical system for 

manipulating variables that can have one of two 

values.

 In formal logic, these values are “true” and 
“false”

 In digital systems, these values are 
“on”/“off,” “high”/“low,” or “1”/”0”.

 So, it is perfect for binary number systems

 Boolean expressions are created to operate 

Boolean variables.

 Common Boolean operators include AND, OR, 
and NOT.
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 The function of Boolean operator 

can be completely described 

using a Truth Table.

 The truth tables of the Boolean 

operators AND and OR are 

shown on the right.

 The AND operator is also known 

as the Boolean product “.”.  The 

OR operator is the Boolean sum 

“+”.

Boolean Algebra
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 The truth table of the 

Boolean NOT operator is 

shown on the right.

 The NOT operation is 

most often designated by 

an overbar “‾”. 

 Some books use the prime 
mark (‘) or the “elbow” (), 

for instead.

Boolean NOT
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 A Boolean function has:

• At least one Boolean variable, 

• At least one Boolean operator, and 

• At least one input from the set of {0,1}.

 It produces an output that is a member of the 

set {0,1} – Either 0 or 1.

Now you know why the binary numbering system 
is so handy for digital systems.

Boolean Function
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 Let’s look at a truth table 

for the following Boolean 

function shown on the 

right. :

 To valuate the Boolean 

function easier, the truth 

table contains a extra 

columns (shaded) to hold 

the evaluations of partial 

function.

Boolean Algebra
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 Arithmetic has its rules of 

precedence

 Like arithmetic, Boolean 

operations follow the rules 

of precedence (priority):

 NOT operator > AND

operator > OR operator .

 This explains why we 

chose the shaded partial 

function in that order in 

the table. 

Rules Of Precedence

Rules Of Precedence
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 Digital circuit designer always like achieve the following 

goals:

 Cheaper to produce

 Consume less power

 run faster

 How to do it? -- We know that:

 Computers contain circuits that implement Boolean functions 

Boolean functions can express circuits

 If we can simplify a Boolean function, that express a circuit, we can 

archive the above goals

 We always can reduce a Boolean function to its 
simplest form by using a number of Boolean laws 
can help us do so.

Use Boolean Algebra in Circuit 
Design
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 Most Boolean algebra laws have either an AND 

(product) form or an OR (sum) form.  We give the 

laws with both forms. 

 Since the laws are always true, so X (and Y) could be 

either 0 or 1

Boolean Algebra Laws
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 The second group of Boolean laws should be 

familiar to you from your study of algebra:

Boolean Algebra Laws (‘Cont)
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 The last group of Boolean laws are perhaps the 

most useful.

 If you have studied set theory or formal logic, these laws 

should be familiar to you.

Boolean Algebra Laws (‘Cont)
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 DeMorgan’s law provides an easy way of finding the 

negation (complement) of a Boolean function.

 DeMorgan’s law states:

 Example

 I will come to school tomorrow if 
 (A) my car is working, and 

 (B) it won’t be snowing

 I won’t come to school tomorrow if 
 (A) my car is not working, or 

 (B) it will snowing

DeMorgan’s law

=

More Examples?
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 DeMorgan’s law can be extended to any number 

of variables.

 Replace each variable by its negation (complement)

 Change all ANDs to ORs and all ORs to ANDs.

 Let’s say F (X, Y, Z) is the following, what is ത𝐹 ?

DeMorgan’s Law
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 Let’s use Boolean laws to simplify:

as follows:

Simplify Boolean function 
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 Apply De Morgan’s theorems 

 Expanding out parenthesis

 Find the common factors

 Popular rules used:

X+XY=X                X+X=X,  XX=X

XY+XY=X              X+0=X, X+1=1

X+XY=X+Y            X0=0  X1=X

Logic simplification steps
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WXYZ W+X+Y+Z

(A+B+C)D

AB+CD+EF 

Example (1)

Apply De Morgan’s theorem 
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Example (2)

 (AB(C+BD)+AB)C
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Example (3)

 ABC+ABC+ABC+ABC+ABC
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Example (4)

 (AB+AC)+ABC
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Example (5)

 AC+ABC+ABCD+ABD
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Example (6)

 (A+B+C)(B+C)(A+B)



An Example on Programming

while  (((A && B) || (A && !B)) || !A)

{

// do something

}

=

while (1)

{

// do something

} 26



 Through our exercises in simplifying Boolean 

expressions, we see that there are 1+ ways of 

stating the same Boolean expression.

 These “synonymous” forms are logically equivalent.

 Logically equivalent expressions could produce 
confusions

 In order to eliminate the confusion, designers 

express Boolean express in unified and 

standardized form, called canonical form.

Boolean Algebra

=XZ
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 There are two canonical forms for Boolean expressions: 

sum-of-products and product-of-sums.

 Boolean product (x) AND logical 

conjunction operator

 Boolean sum (+)  OR logical conjunction 

operator

 In the sum-of-products form, ANDed variables are 

ORed together.

 For example:

 In the product-of-sums form, ORed variables are 

ANDed together:

 For example:

Boolean Algebra
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Minterm and Maxterm

 Some books uses sum-of-minterms form and 
product-of-maxterms form 

 A minterm is a logical expression of n 
variables that employs only the complement
operator and the product operator.
 For example, abc, ab'c and abc' are 3 minterms

for a Boolean function of the three variables a, b, 
and c. 

 A maxterm is a logical expression of n 
variables that employs only the complement
operator and the sum operator.
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 It is easy to convert a function 

to sum-of-products form from 

its truth table.

 We only interested in the 

production of the inputs which 

yields TRUE (=1).

 We first highlight the lines that 

result in 1.

 Then, we group them together 

with OR.

Create Canonical Form Via 

Truth Table
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 Look at this example:

 It may not the simplest 

form. But, it is the standard 
sum-of-products canonical 

form

Create Canonical Form Via Truth 

Table (‘Cont)
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Exercise 

 Convert ABC+A'BC+AB'C+A'B'C+ABC' 
to its simplest form
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Exercise 

 Convert AB + C to the sum-of-products 

form

AB+C
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 We’ve seen Boolean functions in abstract terms.

 You may still ask:
 How could Boolean function be used in 

computer? 

 In reality, Boolean functions are implemented as digital 

circuits, which called Logic Gates.

 A logic gate is an electronic device that produces a 

result based on input values.

 A logic gate may contain multiple transistors, but, we 
think them as one integrated unit.

 Integrated circuits (IC) contain collections of gates, 
for a particular purpose.

3.3 Logic Gates
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 Three simplest gates are the AND, OR, and NOT 

gates.

 Their symbol and their truth tables are listed above.

AND, OR, and NOT Gates

“inversion 

bubble”
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 NAND and NOR 

are two additional 

gates. 

 Their symbols and 

truth tables are 

shown on the 

right.

 NAND = NOT 

AND

 NOR = NOT OR

NAND and NOR Gates
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 NAND and NOR are 

known as universal 

gates! – gates of all 

gates

 They are inexpensive 

to produce

 More important: Any 

Boolean function can 

be constructed using 

only NAND or only 

NOR gates.

The Application of NAND and 
NOR Gates
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 The gates could have multiple inputs and/or multiple

outputs.

 The second output can be provided as the 
complement of the first output.

 We’ll see more integrated circuits, which have 
multiple inputs/outputs.

Multiple Inputs and Outputs of 
Gates
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 Another very useful gate is the Exclusive OR (XOR) 

gate.

 The output of the XOR operation is true (1) only when 

the values of inputs are different.

 The symbol for XOR is 

XOR Gates
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Parity generator / checker

 Electrical noise in the transmission of 
binary information can cause errors

 Parity can detect these types of 
errors

 Parity systems

 Odd parity

 Even parity

 Add a bit to the binary information



42

Even parity check

 Even parity check

 Example: input: A(7…0), Output: 
even_parity bit
 If there are even numbers of 1 in A, 

even_parity = ‘0’,

 If there are odd numbers of 1 in A, 
even_parity = ‘1’

e.g., A = “10100001”, 

even_parity = ‘1’

A = “10100011”, 

even_parity = ‘0’
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Odd parity check

 Odd parity check

 Example: input: A(7…0), Output: 
odd_parity bit

 If there are odd numbers of 1 in A, 
odd_parity = ‘0’,

 If there are even numbers of 1 in A, 
odd_parity = ‘1’

e.g., A = “10100001”, 

odd_parity = ‘0’

A = “10100011”, 

odd_parity = ‘1’
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Odd-parity generator/checker 
system
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Error detection

 Transmitting end: The parity generator 
creates the parity bit.

 Receiving end: The parity checker 
determines if the parity is correct. 

 e.g., odd-parity check of 8-bit data 

 Data send: 10111101 + 1

 Data received:  101011011

odd-parity check: The number of 1 is even  →

error
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Discussion point

 What are disadvantages of even parity 
(or odd parity) check to detect 
transmission errors? Consider the 
following case:

 Protocol: 8-bit plus one even parity bit

 Information sent:       11011100 + 1

 Information received: 10010100 + 1

 The parity generator/checker system 
detects only errors that occur to 1 bit.
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Parity check using XOR

 N-1  XOR gates can be cascaded to form a 
circuit with N inputs and a single output 

– even-parity circuit. 

 Example: N=8, Inputs=10111101, even-parity 
output

=((10)(11))((11)(01))=0

 Odd-parity check circuit: even-parity check 
circuit Inverted Odd-parity check

 Example: N=8, Inputs=10111101, odd-parity 
output

=NOT(((10)(11))((11)(01)))=1
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Binary comparators

 A n-bit comparator determines if two n-bit signal vectors 
are equal:

EQ(X[1:n],Y[1:n])=(X1=Y1)(X2=Y2)….(Xn=Yn)

1-bit comparator

4-bit comparator

 A one-bit comparator is the same as the XOR



Two Types of Logic Circuits 

 Combinational Logic Circuit (CLC)

 Good at designing computational
components in the CPU, such as ALU

 Sequential Logic Circuit (SLC)

 Good at designing memory components, 
such as registers and memory
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 We use the combination of gates to implement 

Boolean functions.

 The circuit below implements the Boolean function:

Logic Gates
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3.5 Combinational 
Circuits

 The circuit implements the Boolean function:

 The major characteristics of this kind of circuits:

 The circuit produces an output almost immediately 

after the inputs are given.

 This kind of circuits are called combinational 

logic circuit (CLC).

 In a later section, we will explore circuits 
where this is not the case.
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Simplify CLC via Boolean 

Algebra

 As I have mentioned previously:

 The simpler that we can express a Boolean function, 

the smaller the circuit will be constructed.

 Simpler circuits are cheaper  consume less 
power  run faster than complex circuits.

 We always want to reduce a Boolean function to its 

simplest form.

 It is important to simplify combinational logic circuit 

via Boolean algebra laws
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Simplify CLC via Boolean 

Algebra

 Look at this example

=

=

=

=

=

Can we simplify 
this circuit? If 

yes, then how?
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Steps to Simplify a Complex 
Circuit

 From this example, we know that the 
basic steps to simplify a complex 
circuit is the following:

 Step1: Express a logical circuit into a 
Boolean expression

 Step2: Simplify the Boolean expression 
as much as possible

 Step3: Re-express the simplified 
expression back to a circuit.
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Example of Simplify a Logical 
Circuit

 Simplify the following circuit
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Example of Simplify a Logical 
Circuit

 Step1: Express a logical circuit into a 
Boolean expression
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Example of Simplify a Logical 
Circuit

 Step2: Simplify the Boolean expression 
as much as possible
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Example of Simplify a Logical 
Circuit

 Step3: Re-express the simplified 
expression back to a circuit

Obviously, the simplified circuit is much 
simpler than the original one
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 Combinational logic circuits 

can be used to create many 

useful devices.

 Half Adder: Compute the 

sum of two bits.

 Let’s gain some insight of 

how to construct a half 

adder by looking at its truth 

table on the right.

Combinational Circuits: Half 

Adder
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 It consists two gates: 

 a XOR gate -- the sum bit

 a AND gate -- the carry bit 

Combinational Circuits: Half 

Adder (‘Cont)
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 We can extend the half 

adder to a full adder, 

which includes an 

additional carry bit 

(Carry In)

 The truth table for a full 

adder is shown on the 

right.

Combinational Circuits: Full 

Adder 
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 How can we extend the 

half adder to a full 

adder?

Half Adder  Full Adder ?

 Hint: First calculate X + Y by a half adder, 

then the sum adds the carry in bit, then……  62



The Full Adder
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 Just as we combined half adders to construct a 

full adder, full adders can be connected in series.

 The carry bit “ripples” from one adder to the next. 

This configuration is called a ripple-carry adder.

 This is the full adder for two 16 bits!

Ripple-carry Adder
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 Decoder is another important combinational circuit.

 It is used to select a memory location according a 

address in binary form

 Application: given a memory address  Obtain its 

memory content. 

 Address decoder with n inputs can select one out 

of 2n locations. 

Decoder

Address 
Lines

Memory
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Decoder
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 This is a 2-to-4 decoder :

A 2-to-4 Decoder

0

1

0

0

1

0

Address: 
01

Memory

Only this piece of 
memory will be 

chosen/accessed
67
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 A multiplexer works just the 

opposite to a decoder.

 It selects a single value 

from multiple inputs.

 The chosen input for output 

is determined by the value 

of the multiplexer’s control 

lines.

 To select from n inputs, 

log2n control lines are 

required.

Multiplexer

1  0 Address

M
em

o
ry

69
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A four-line multiplexer

What is the logic equation for 

the output Y =?



 This is a 4-to-1 multiplexer.  

which input is transferred to the output?   

Combinational Circuits

0

1
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A Simple Two-Bit ALU



3.6 Sequential Logic Circuits (SLC)

 Combinational logic circuits are perfect for those 

applications when a Boolean function be immediately 

evaluated, given the current inputs. 

 Examples:  multiplexer, ripple-carry adder, shifter, etc

 However, sometimes, we need a kind of circuits that 

change value by considering the current inputs and its 

current state.

 Memory is such an example that requires to remember 
the current state

 The circuits need to “remember” their states.

 Sequential logic circuits (SLC) provide this functionality. 
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How to “remember”?

 Think about the states in your own 
life-time

 1 years old, blabla…

 2 years old, blabla…

 3 years old, blabla…

Time
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 As the name implies, sequential logic circuits require a 

means by which events can be sequenced.

 The change of states is triggered by the clock.

 The “clock” is a special circuit that sends 

electrical pulses to a sequential logic circuit.

 Clocks produce electrical waveforms constantly, such 

as the one shown below.

Essential Component of Sequential 
Circuits: Clocks
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 State changes occur in sequential circuits, only 

when the clock ticks. 

 A sequential logic circuits could changes it state 

 Either, at the rising/falling edge of the clock pulse , 

 Or, when the clock pulse reaches its highest/lowest level.

When Change Its State?
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 SLC that changes its state at the rising edge, or the 

falling edge of the clock pulse is called Edge-

triggered SLC.

 SLC that changes its state when the clock voltage 

reaches to its highest or lowest level are called 

Level-triggered SLC.

Edge-triggered Or Level-triggered?

Edge-triggered SLC
Level-triggered SLC
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Latch And Flip-flop

 latch and flip-flop are two kinds of SLCs, 
which are used to construct memory

 A latch is level-triggered

 A flip-flop is edge-triggered

 Which one depends on the length of the clock 
pulse?

 Latch, or

 flip-flop?
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 The most important design mechanism of SLC is 

Feedback 

 Feedback can retain the state of sequential circuits

 Feedback in digital circuits occurs when an 

output is looped back as an input.

 A simple example of this concept is shown 

below.

 If Q is 0 it will always be 0, if it is 1, it will 
always be 1. --- The motivation of Memory!

Essential Component Of 
Sequential Circuits: Feedback
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 You can see how feedback works by examining 

the most basic sequential logic components, the 

SR flip-flop.

 The “SR” stands for set/reset.

 The internals of an SR flip-flop are shown below, 

along with its block diagram.

SR Flip-flop

Clock Driven

C
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 The behavior of an SR flip-flop is illustrated in the 

following truth table.

 Let’s denote Q(t) as the value of the output at time t, and 

 Denote Q(t+1) is the value of Q at time t+1.

Behavior Of An SR Flip-flop
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 We consider Q(t), its 

current output, as the 

third input for SR flip-

flop, besides S and R.

 The truth table for this 

circuit, as shown on the 

right.

 When both S and R are 

1, the SR flip-flop is in 

forbidden state

SR Flip-flop Truth Table

forbidden state

Q(t+1)
=Q(t)

0

1

Retain its 
original value

Change its 
value
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Clocked SR Flip-flop
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 One limitation of SR flip-flop is that, when S and 

R are both 1, the output is undefined.
 This is not nice because it wastes a state

 Therefore, SR flip-flop can be modified to provide 

a stable state when both S and R inputs are 1.

•  This modified flip-flop is 

called a JK flip-flop, 

shown on the right.
- The “JK” is in honor of 

Jack Kilby.

JK Flip-flop
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 On the right, we see 

how an SR flip-flop can 

be modified to create a 

JK flip-flop.

 The truth table 

indicates that the flip-

flop is stable for all 

inputs.

 When J and K are 

both 1, Q(t+1) = ¬Q(t)

3.6 Sequential Circuits
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An Example

 Let’s say a JK flip-flop is rising-edge triggered

 At t0, Q(t) = 0. What will be the changes of the value of 

Q over time?
Time

•  Any time other than 

the rising edge won’t

trigger this JK flip-flop 

to change its state
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 Another modification of the SR flip-flop is the D 

flip-flop, shown below with its truth table.

 You will notice that the output of the flip-flop 

remains the same during subsequent clock 

pulses. The output changes only when the value 

of D changes.

D Flip-flop
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 The D flip-flop is the fundamental circuit of 

computer memory. 

 D flip-flop and its truth table are 
illustrated as below.

D Flip-flop

90



 Sequential circuits are used anytime that we 

need to design a “stateful” application.

 A stateful application is one where the next state of the 

machine depends on the current state of the machine 

and the input.

 A stateful application requires both combinational 

and sequential logic.

 The following slides provide several examples of 

circuits that fall into this category.

Can you think of 
others?   

3.6 Sequential Circuits
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 This illustration shows a 

4-bit register consisting 

of D flip-flops. You will 

usually see its block 

diagram (below) instead.

A larger memory configuration 
is shown on the next slide.

3.6 Sequential Circuits
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3.6 4X3 Memory

Read the 
content 
from the 
memory

(0,0); (0,1); (1,0); (1,1); 

Choose a word, Wordi

(0<=i<=3)

Write 
the 
content 
into the 
memory
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 A binary counter is 

another example of a 

sequential circuit.

 The low-order bit is 

complemented at 

each clock pulse.

 Whenever it changes 

from 0 to 1, the next 

bit is complemented, 

and so on through the 

other flip-flops.

3.6 Sequential Circuits

94
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 Digital designers rely on specialized software 

to create efficient circuits.

 Thus, software is an enabler for the 
construction of better hardware.

 Of course, software is in reality a collection of 

algorithms that could just as well be 

implemented in hardware.

 Recall the Principle of Equivalence of 
Hardware and Software.

3.7 Designing Circuits
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 When we need to implement a simple, specialized 

algorithm and its execution speed must be as fast 

as possible, a hardware solution is often preferred.

 This is the idea behind embedded systems, which 

are small special-purpose computers that we find in 

many everyday things.

 Embedded systems require special programming 

that demands an understanding of the operation of 

digital circuits, the basics of which you have 

learned in this chapter.

Designing Circuits
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 Computers are implementations of Boolean 

logic.

 Boolean functions are completely described by 

truth tables.

 Logic gates are small circuits that implement 

Boolean operators. 

 The basic gates are AND, OR, and NOT.

 The XOR gate is very useful in parity 
checkers and adders.

 The “universal gates” are NOR and NAND.

Chapter 3 Conclusion
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 Computer circuits consist of combinational logic 

circuits and sequential logic circuits.

 Combinational circuits produce outputs almost 

immediately when their inputs change.

 Sequential circuits require clocks to control 

their changes of state.

 The basic sequential circuit unit is the flip-flop: 

The behaviors of the SR, JK, and D flip-flops 

are the most important to know.

Chapter 3 Conclusion
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End of Chapter 3
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