
Chapter 3 – Boolean Algebra
and Digital Logic

CS 271 Computer Architecture

Purdue University Fort Wayne

1

Objectives

 Understand the relationship between Boolean

logic and digital computer circuits.

 Learn how to design simple logic circuits.

 Understand how digital circuits work together to

form complex computer systems.

2

 In the latter 19th century, George Boole suggested

that logical thought could be represented through

mathematical equations.

 Boolean algebra is everywhere

 https://www.google.com/doodles/george-booles-

200th-birthday

Introduction

3

https://www.google.com/doodles/george-booles-200th-birthday

 Digital circuit

 Google search

 Database (SQL)

 Programming

 ……

Application of Boolean Algebra

4

An Example on Programming

while (((A && B) || (A && !B)) || !A)

{

// do something

}

5

3.2 Boolean Algebra

 Boolean algebra is a mathematical system for

manipulating variables that can have one of two

values.

 In formal logic, these values are “true” and
“false”

 In digital systems, these values are
“on”/“off,” “high”/“low,” or “1”/”0”.

 So, it is perfect for binary number systems

 Boolean expressions are created to operate

Boolean variables.

 Common Boolean operators include AND, OR,
and NOT.

6

 The function of Boolean operator

can be completely described

using a Truth Table.

 The truth tables of the Boolean

operators AND and OR are

shown on the right.

 The AND operator is also known

as the Boolean product “.”. The

OR operator is the Boolean sum

“+”.

Boolean Algebra

7

 The truth table of the

Boolean NOT operator is

shown on the right.

 The NOT operation is

most often designated by

an overbar “‾”.

 Some books use the prime
mark (‘) or the “elbow” (),

for instead.

Boolean NOT

8

 A Boolean function has:

• At least one Boolean variable,

• At least one Boolean operator, and

• At least one input from the set of {0,1}.

 It produces an output that is a member of the

set {0,1} – Either 0 or 1.

Now you know why the binary numbering system
is so handy for digital systems.

Boolean Function

9

 Let’s look at a truth table

for the following Boolean

function shown on the

right. :

 To valuate the Boolean

function easier, the truth

table contains a extra

columns (shaded) to hold

the evaluations of partial

function.

Boolean Algebra

10

 Arithmetic has its rules of

precedence

 Like arithmetic, Boolean

operations follow the rules

of precedence (priority):

 NOT operator > AND

operator > OR operator .

 This explains why we

chose the shaded partial

function in that order in

the table.

Rules Of Precedence

Rules Of Precedence

11

 Digital circuit designer always like achieve the following

goals:

 Cheaper to produce

 Consume less power

 run faster

 How to do it? -- We know that:

 Computers contain circuits that implement Boolean functions 

Boolean functions can express circuits

 If we can simplify a Boolean function, that express a circuit, we can

archive the above goals

 We always can reduce a Boolean function to its
simplest form by using a number of Boolean laws
can help us do so.

Use Boolean Algebra in Circuit
Design

12

 Most Boolean algebra laws have either an AND

(product) form or an OR (sum) form. We give the

laws with both forms.

 Since the laws are always true, so X (and Y) could be

either 0 or 1

Boolean Algebra Laws

13

 The second group of Boolean laws should be

familiar to you from your study of algebra:

Boolean Algebra Laws (‘Cont)

14

 The last group of Boolean laws are perhaps the

most useful.

 If you have studied set theory or formal logic, these laws

should be familiar to you.

Boolean Algebra Laws (‘Cont)

15

 DeMorgan’s law provides an easy way of finding the

negation (complement) of a Boolean function.

 DeMorgan’s law states:

 Example

 I will come to school tomorrow if
 (A) my car is working, and

 (B) it won’t be snowing

 I won’t come to school tomorrow if
 (A) my car is not working, or

 (B) it will snowing

DeMorgan’s law

=

More Examples?

16

 DeMorgan’s law can be extended to any number

of variables.

 Replace each variable by its negation (complement)

 Change all ANDs to ORs and all ORs to ANDs.

 Let’s say F (X, Y, Z) is the following, what is ത𝐹 ?

DeMorgan’s Law

17

 Let’s use Boolean laws to simplify:

as follows:

Simplify Boolean function

18

19

 Apply De Morgan’s theorems

 Expanding out parenthesis

 Find the common factors

 Popular rules used:

X+XY=X X+X=X, XX=X

XY+XY=X X+0=X, X+1=1

X+XY=X+Y X0=0 X1=X

Logic simplification steps

20

WXYZ W+X+Y+Z

(A+B+C)D

AB+CD+EF

Example (1)

Apply De Morgan’s theorem

21

Example (2)

 (AB(C+BD)+AB)C

22

Example (3)

 ABC+ABC+ABC+ABC+ABC

23

Example (4)

 (AB+AC)+ABC

24

Example (5)

 AC+ABC+ABCD+ABD

25

Example (6)

 (A+B+C)(B+C)(A+B)

An Example on Programming

while (((A && B) || (A && !B)) || !A)

{

// do something

}

=

while (1)

{

// do something

} 26

 Through our exercises in simplifying Boolean

expressions, we see that there are 1+ ways of

stating the same Boolean expression.

 These “synonymous” forms are logically equivalent.

 Logically equivalent expressions could produce
confusions

 In order to eliminate the confusion, designers

express Boolean express in unified and

standardized form, called canonical form.

Boolean Algebra

=XZ

27

 There are two canonical forms for Boolean expressions:

sum-of-products and product-of-sums.

 Boolean product (x) AND logical

conjunction operator

 Boolean sum (+)  OR logical conjunction

operator

 In the sum-of-products form, ANDed variables are

ORed together.

 For example:

 In the product-of-sums form, ORed variables are

ANDed together:

 For example:

Boolean Algebra

28

Minterm and Maxterm

 Some books uses sum-of-minterms form and
product-of-maxterms form

 A minterm is a logical expression of n
variables that employs only the complement
operator and the product operator.
 For example, abc, ab'c and abc' are 3 minterms

for a Boolean function of the three variables a, b,
and c.

 A maxterm is a logical expression of n
variables that employs only the complement
operator and the sum operator.

29

 It is easy to convert a function

to sum-of-products form from

its truth table.

 We only interested in the

production of the inputs which

yields TRUE (=1).

 We first highlight the lines that

result in 1.

 Then, we group them together

with OR.

Create Canonical Form Via

Truth Table

30

 Look at this example:

 It may not the simplest

form. But, it is the standard
sum-of-products canonical

form

Create Canonical Form Via Truth

Table (‘Cont)

31

Exercise

 Convert ABC+A'BC+AB'C+A'B'C+ABC'
to its simplest form

32

Exercise

 Convert AB + C to the sum-of-products

form

AB+C

33

 We’ve seen Boolean functions in abstract terms.

 You may still ask:
 How could Boolean function be used in

computer?

 In reality, Boolean functions are implemented as digital

circuits, which called Logic Gates.

 A logic gate is an electronic device that produces a

result based on input values.

 A logic gate may contain multiple transistors, but, we
think them as one integrated unit.

 Integrated circuits (IC) contain collections of gates,
for a particular purpose.

3.3 Logic Gates

34

 Three simplest gates are the AND, OR, and NOT

gates.

 Their symbol and their truth tables are listed above.

AND, OR, and NOT Gates

“inversion

bubble”

35

 NAND and NOR

are two additional

gates.

 Their symbols and

truth tables are

shown on the

right.

 NAND = NOT

AND

 NOR = NOT OR

NAND and NOR Gates

36

 NAND and NOR are

known as universal

gates! – gates of all

gates

 They are inexpensive

to produce

 More important: Any

Boolean function can

be constructed using

only NAND or only

NOR gates.

The Application of NAND and
NOR Gates

37

 The gates could have multiple inputs and/or multiple

outputs.

 The second output can be provided as the
complement of the first output.

 We’ll see more integrated circuits, which have
multiple inputs/outputs.

Multiple Inputs and Outputs of
Gates

39

 Another very useful gate is the Exclusive OR (XOR)

gate.

 The output of the XOR operation is true (1) only when

the values of inputs are different.

 The symbol for XOR is 

XOR Gates

40

41

Parity generator / checker

 Electrical noise in the transmission of
binary information can cause errors

 Parity can detect these types of
errors

 Parity systems

 Odd parity

 Even parity

 Add a bit to the binary information

42

Even parity check

 Even parity check

 Example: input: A(7…0), Output:
even_parity bit
 If there are even numbers of 1 in A,

even_parity = ‘0’,

 If there are odd numbers of 1 in A,
even_parity = ‘1’

e.g., A = “10100001”,

even_parity = ‘1’

A = “10100011”,

even_parity = ‘0’

43

Odd parity check

 Odd parity check

 Example: input: A(7…0), Output:
odd_parity bit

 If there are odd numbers of 1 in A,
odd_parity = ‘0’,

 If there are even numbers of 1 in A,
odd_parity = ‘1’

e.g., A = “10100001”,

odd_parity = ‘0’

A = “10100011”,

odd_parity = ‘1’

44

Odd-parity generator/checker
system

45

Error detection

 Transmitting end: The parity generator
creates the parity bit.

 Receiving end: The parity checker
determines if the parity is correct.

 e.g., odd-parity check of 8-bit data

 Data send: 10111101 + 1

 Data received: 101011011

odd-parity check: The number of 1 is even →

error

46

Discussion point

 What are disadvantages of even parity
(or odd parity) check to detect
transmission errors? Consider the
following case:

 Protocol: 8-bit plus one even parity bit

 Information sent: 11011100 + 1

 Information received: 10010100 + 1

 The parity generator/checker system
detects only errors that occur to 1 bit.

47

Parity check using XOR

 N-1 XOR gates can be cascaded to form a
circuit with N inputs and a single output

– even-parity circuit.

 Example: N=8, Inputs=10111101, even-parity
output

=((10)(11))((11)(01))=0

 Odd-parity check circuit: even-parity check
circuit Inverted Odd-parity check

 Example: N=8, Inputs=10111101, odd-parity
output

=NOT(((10)(11))((11)(01)))=1

48

Binary comparators

 A n-bit comparator determines if two n-bit signal vectors
are equal:

EQ(X[1:n],Y[1:n])=(X1=Y1)(X2=Y2)….(Xn=Yn)

1-bit comparator

4-bit comparator

 A one-bit comparator is the same as the XOR

Two Types of Logic Circuits

 Combinational Logic Circuit (CLC)

 Good at designing computational
components in the CPU, such as ALU

 Sequential Logic Circuit (SLC)

 Good at designing memory components,
such as registers and memory

49

 We use the combination of gates to implement

Boolean functions.

 The circuit below implements the Boolean function:

Logic Gates

50

3.5 Combinational
Circuits

 The circuit implements the Boolean function:

 The major characteristics of this kind of circuits:

 The circuit produces an output almost immediately

after the inputs are given.

 This kind of circuits are called combinational

logic circuit (CLC).

 In a later section, we will explore circuits
where this is not the case.

51

Simplify CLC via Boolean

Algebra

 As I have mentioned previously:

 The simpler that we can express a Boolean function,

the smaller the circuit will be constructed.

 Simpler circuits are cheaper  consume less
power  run faster than complex circuits.

 We always want to reduce a Boolean function to its

simplest form.

 It is important to simplify combinational logic circuit

via Boolean algebra laws

52

Simplify CLC via Boolean

Algebra

 Look at this example

=

=

=

=

=

Can we simplify
this circuit? If

yes, then how?

53

Steps to Simplify a Complex
Circuit

 From this example, we know that the
basic steps to simplify a complex
circuit is the following:

 Step1: Express a logical circuit into a
Boolean expression

 Step2: Simplify the Boolean expression
as much as possible

 Step3: Re-express the simplified
expression back to a circuit.

54

Example of Simplify a Logical
Circuit

 Simplify the following circuit

55

Example of Simplify a Logical
Circuit

 Step1: Express a logical circuit into a
Boolean expression

56

Example of Simplify a Logical
Circuit

 Step2: Simplify the Boolean expression
as much as possible

57

Example of Simplify a Logical
Circuit

 Step3: Re-express the simplified
expression back to a circuit

Obviously, the simplified circuit is much
simpler than the original one

58

 Combinational logic circuits

can be used to create many

useful devices.

 Half Adder: Compute the

sum of two bits.

 Let’s gain some insight of

how to construct a half

adder by looking at its truth

table on the right.

Combinational Circuits: Half

Adder

59

 It consists two gates:

 a XOR gate -- the sum bit

 a AND gate -- the carry bit

Combinational Circuits: Half

Adder (‘Cont)

60

 We can extend the half

adder to a full adder,

which includes an

additional carry bit

(Carry In)

 The truth table for a full

adder is shown on the

right.

Combinational Circuits: Full

Adder

61

 How can we extend the

half adder to a full

adder?

Half Adder  Full Adder ?

 Hint: First calculate X + Y by a half adder,

then the sum adds the carry in bit, then…… 62

The Full Adder

63

 Just as we combined half adders to construct a

full adder, full adders can be connected in series.

 The carry bit “ripples” from one adder to the next.

This configuration is called a ripple-carry adder.

 This is the full adder for two 16 bits!

Ripple-carry Adder

64

 Decoder is another important combinational circuit.

 It is used to select a memory location according a

address in binary form

 Application: given a memory address  Obtain its

memory content.

 Address decoder with n inputs can select one out

of 2n locations.

Decoder

Address
Lines

Memory

65

Decoder

66

 This is a 2-to-4 decoder :

A 2-to-4 Decoder

0

1

0

0

1

0

Address:
01

Memory

Only this piece of
memory will be

chosen/accessed
67

68
74138 as a memory address decoder

 A multiplexer works just the

opposite to a decoder.

 It selects a single value

from multiple inputs.

 The chosen input for output

is determined by the value

of the multiplexer’s control

lines.

 To select from n inputs,

log2n control lines are

required.

Multiplexer

1 0 Address

M
em

o
ry

69

70

A four-line multiplexer

What is the logic equation for

the output Y =?

 This is a 4-to-1 multiplexer.

which input is transferred to the output?

Combinational Circuits

0

1

71

A Simple Two-Bit ALU

3.6 Sequential Logic Circuits (SLC)

 Combinational logic circuits are perfect for those

applications when a Boolean function be immediately

evaluated, given the current inputs.

 Examples: multiplexer, ripple-carry adder, shifter, etc

 However, sometimes, we need a kind of circuits that

change value by considering the current inputs and its

current state.

 Memory is such an example that requires to remember
the current state

 The circuits need to “remember” their states.

 Sequential logic circuits (SLC) provide this functionality.

75

How to “remember”?

 Think about the states in your own
life-time

 1 years old, blabla…

 2 years old, blabla…

 3 years old, blabla…

Time

76

 As the name implies, sequential logic circuits require a

means by which events can be sequenced.

 The change of states is triggered by the clock.

 The “clock” is a special circuit that sends

electrical pulses to a sequential logic circuit.

 Clocks produce electrical waveforms constantly, such

as the one shown below.

Essential Component of Sequential
Circuits: Clocks

77

 State changes occur in sequential circuits, only

when the clock ticks.

 A sequential logic circuits could changes it state

 Either, at the rising/falling edge of the clock pulse ,

 Or, when the clock pulse reaches its highest/lowest level.

When Change Its State?

78

 SLC that changes its state at the rising edge, or the

falling edge of the clock pulse is called Edge-

triggered SLC.

 SLC that changes its state when the clock voltage

reaches to its highest or lowest level are called

Level-triggered SLC.

Edge-triggered Or Level-triggered?

Edge-triggered SLC
Level-triggered SLC

79

Latch And Flip-flop

 latch and flip-flop are two kinds of SLCs,
which are used to construct memory

 A latch is level-triggered

 A flip-flop is edge-triggered

 Which one depends on the length of the clock
pulse?

 Latch, or

 flip-flop?

80

 The most important design mechanism of SLC is

Feedback

 Feedback can retain the state of sequential circuits

 Feedback in digital circuits occurs when an

output is looped back as an input.

 A simple example of this concept is shown

below.

 If Q is 0 it will always be 0, if it is 1, it will
always be 1. --- The motivation of Memory!

Essential Component Of
Sequential Circuits: Feedback

81

 You can see how feedback works by examining

the most basic sequential logic components, the

SR flip-flop.

 The “SR” stands for set/reset.

 The internals of an SR flip-flop are shown below,

along with its block diagram.

SR Flip-flop

Clock Driven

C
82

 The behavior of an SR flip-flop is illustrated in the

following truth table.

 Let’s denote Q(t) as the value of the output at time t, and

 Denote Q(t+1) is the value of Q at time t+1.

Behavior Of An SR Flip-flop

C 83

 We consider Q(t), its

current output, as the

third input for SR flip-

flop, besides S and R.

 The truth table for this

circuit, as shown on the

right.

 When both S and R are

1, the SR flip-flop is in

forbidden state

SR Flip-flop Truth Table

forbidden state

Q(t+1)
=Q(t)

0

1

Retain its
original value

Change its
value

84

Clocked SR Flip-flop

85

 One limitation of SR flip-flop is that, when S and

R are both 1, the output is undefined.
 This is not nice because it wastes a state

 Therefore, SR flip-flop can be modified to provide

a stable state when both S and R inputs are 1.

• This modified flip-flop is

called a JK flip-flop,

shown on the right.
- The “JK” is in honor of

Jack Kilby.

JK Flip-flop

86

 On the right, we see

how an SR flip-flop can

be modified to create a

JK flip-flop.

 The truth table

indicates that the flip-

flop is stable for all

inputs.

 When J and K are

both 1, Q(t+1) = ¬Q(t)

3.6 Sequential Circuits

87

An Example

 Let’s say a JK flip-flop is rising-edge triggered

 At t0, Q(t) = 0. What will be the changes of the value of

Q over time?
Time

• Any time other than

the rising edge won’t

trigger this JK flip-flop

to change its state

88

 Another modification of the SR flip-flop is the D

flip-flop, shown below with its truth table.

 You will notice that the output of the flip-flop

remains the same during subsequent clock

pulses. The output changes only when the value

of D changes.

D Flip-flop

89

 The D flip-flop is the fundamental circuit of

computer memory.

 D flip-flop and its truth table are
illustrated as below.

D Flip-flop

90

 Sequential circuits are used anytime that we

need to design a “stateful” application.

 A stateful application is one where the next state of the

machine depends on the current state of the machine

and the input.

 A stateful application requires both combinational

and sequential logic.

 The following slides provide several examples of

circuits that fall into this category.

Can you think of
others?

3.6 Sequential Circuits

91

 This illustration shows a

4-bit register consisting

of D flip-flops. You will

usually see its block

diagram (below) instead.

A larger memory configuration
is shown on the next slide.

3.6 Sequential Circuits

92

3.6 4X3 Memory

Read the
content
from the
memory

(0,0); (0,1); (1,0); (1,1);

Choose a word, Wordi

(0<=i<=3)

Write
the
content
into the
memory

93

 A binary counter is

another example of a

sequential circuit.

 The low-order bit is

complemented at

each clock pulse.

 Whenever it changes

from 0 to 1, the next

bit is complemented,

and so on through the

other flip-flops.

3.6 Sequential Circuits

94
Synchronous MOD-16 counter

 Digital designers rely on specialized software

to create efficient circuits.

 Thus, software is an enabler for the
construction of better hardware.

 Of course, software is in reality a collection of

algorithms that could just as well be

implemented in hardware.

 Recall the Principle of Equivalence of
Hardware and Software.

3.7 Designing Circuits

95

 When we need to implement a simple, specialized

algorithm and its execution speed must be as fast

as possible, a hardware solution is often preferred.

 This is the idea behind embedded systems, which

are small special-purpose computers that we find in

many everyday things.

 Embedded systems require special programming

that demands an understanding of the operation of

digital circuits, the basics of which you have

learned in this chapter.

Designing Circuits

96

 Computers are implementations of Boolean

logic.

 Boolean functions are completely described by

truth tables.

 Logic gates are small circuits that implement

Boolean operators.

 The basic gates are AND, OR, and NOT.

 The XOR gate is very useful in parity
checkers and adders.

 The “universal gates” are NOR and NAND.

Chapter 3 Conclusion

97

 Computer circuits consist of combinational logic

circuits and sequential logic circuits.

 Combinational circuits produce outputs almost

immediately when their inputs change.

 Sequential circuits require clocks to control

their changes of state.

 The basic sequential circuit unit is the flip-flop:

The behaviors of the SR, JK, and D flip-flops

are the most important to know.

Chapter 3 Conclusion

98

End of Chapter 3

99

