
1

CS 271 Computer Architecture

Purdue University Fort Wayne

Assembly Language for x86
Processors

 X86 Processor Architecture

Outline

 Basic IA Computer Organization

 IA-32 Registers

 Instruction Execution Cycle

Basic IA Computer Organization

 Since the 1940's, the Von Neumann computers
contains three key components:

 Processor, called also the CPU (Central Processing Unit)

 Memory and Storage Devices

 I/O Devices

 Interconnected with one or more buses

 Data Bus

 Address Bus

 Control Bus

 IA: Intel Architecture

32-bit (or i386)

Processor

(CPU)
Memory

registers

ALU clock

I/O
Device

#1

I/O
Device

#2

data bus

control bus

address bus

CU

 The processor consists of

 Datapath

 ALU

 Registers

 Control unit

 ALU (Arithmetic logic unit)

 Performs arithmetic
and logic operations

 Control unit (CU)

 Generates the control signals required to execute instructions

Processor

Memory Address Space

Address Space is
the set of
memory locations
(bytes) that are
addressable

Next ...

 Basic Computer Organization

 IA-32 Registers

 Instruction Execution Cycle

Registers

CS

SS

DS

ES

EIP

EFLAGS

16-bit Segment Registers

EAX

EBX

ECX

EDX

32-bit General-Purpose Registers

FS

GS

EBP

ESP

ESI

EDI

 Registers are high speed memory inside the CPU

 Eight 32-bit general-purpose registers

 Six 16-bit segment registers

 Processor Status Flags (EFLAGS) and Instruction Pointer
(EIP)

General-Purpose Registers
 Used primarily for arithmetic and data movement

 mov eax 10 ;move constant integer 10 into register eax

 Specialized uses of Registers

 eax – Accumulator register

 Automatically used by multiplication and division instructions

 ecx – Counter register

 Automatically used by LOOP instructions

 esp– Stack Pointer register

 Used by PUSH and POP instructions, points to top of stack

 esi and edi – Source Index and Destination Index register

 Used by string instructions

 ebp – Base Pointer register

 Used to reference parameters and local variables on the stack

Special-Purpose & Segment
Registers

 EIP = Extended Instruction Pointer

 Contains address of next instruction to be executed

 EFLAGS = Extended Flags Register

 Contains status and control flags

 Each flag is a single binary bit

 Six 16-bit Segment Registers

 Support segmented memory

 Segments contain distinct contents

 Code

 Data

 Stack

Special-Purpose & Segment
Registers

 EIP = Extended Instruction Pointer

 Contains address of next instruction to be executed

 Six 16-bit Segment Registers

 Support segmented memory

 Segments contain distinct contents

 Code segment

 Data segment

 Stack segment

=Program
Counter (PC)

32-bit address

32-bit address

32-bit address

Unused

STACK

DATA

CODEEIP

ESI

EDI

EBP

ESP

Linear address space of

a program (up to 4 GB)

CS

DS

SS

ES

base address = 0

for all segments

Programmer View of Flat Memory

 Same base address for all segments

 All segments are mapped to the same
linear address space

 EIP Register

 Points at next instruction

 ESI and EDI Registers

 Contain data addresses

 Used also to index arrays

 ESP and EBP Registers

 ESP points at top of stack

 EBP is used to address parameters
and variables on the stack

Special-Purpose & Segment
Registers

 For each operation that performed in CPU, there
must be a mechanism to determine if the
operation is success or not

 The flags are used for this purpose

 IA-32 uses a single register: EFLAGS =
Extended Flags Register (32 bits)

 Contains status and control flags

 Each flag is a single binary bit

EFLAGS Register

 Status Flags

 Status of arithmetic and logical operations

 Control and System flags

 Control the CPU operation

 Programs can set and clear individual bits in the EFLAGS
register

Status Flags

 Carry Flag

 Set when unsigned arithmetic result is out of range

 Overflow Flag

 Set when signed arithmetic result is out of range

 Sign Flag

 Copy of sign bit, set when result is negative

 Zero Flag

 Set when result is zero

 Auxiliary Carry Flag

 Set when there is a carry from bit 3 to bit 4

 Parity Flag

 Set when parity is even

 Least-significant byte in result contains even number of 1s

19

64-Bit Processors

 64-Bit Operation Modes

 Compatibility mode – can run existing 16-bit
and 32-bit applications (Windows supports
only 32-bit apps in this mode)

 64-bit mode – Windows 64 uses this

 Basic Execution Environment

 addresses can be 64 bits (48 bits, in practice)

 16 64-bit general purpose registers

 64-bit instruction pointer named RIP

20

64-Bit General Purpose Registers

 32-bit general purpose registers:

 EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP,
R8D, R9D, R10D, R11D, R12D, R13D,
R14D, R15D

 64-bit general purpose registers:

 RAX, RBX, RCX, RDX, RDI, RSI, RBP,
RSP, R8, R9, R10, R11, R12, R13, R14,
R15

Next ...

 Basic Computer Organization

 IA-32 Registers

 Instruction Execution Cycle

Fetch-Execute Cycle: The
Heart-beat of CPU

 Each machine language instruction is first fetched from
the memory and stored in an Instruction Register or
simply IR.

 The address of the instruction to be fetched is stored in a
register called the Instruction Pointer or EIP. In some
computers this register is called Program Counter or
simply PC.

 After fetching the instruction, the EIP (or PC) is
incremented to point to the address of the next
instruction.

 The fetched instruction is decoded (to determine what
needs to be done) and executed by the CPU.

Instruction Execute Cycle

Obtain instruction from program storage

Determine required actions and instruction
size

Locate and obtain operand data

Compute result value and status

Deposit results in storage for later use

Instruction
Decode

Instruction
Fetch

Operand
Fetch

Execute

Writeback
Result

I
n

fi
n

it
e
 C

y
c
le

