
1

CS 271 Computer Architecture

Purdue University Fort Wayne

Assembly Language for x86
Processors

 Assembly Language
fundamentals

Outline

 Statements

 Pseudo-instructions

 Directives

Assembly-Language Statement
Structure

 The heart of any assembly language
program are statements

Figure 15.2 Assembly-Language Statement Structure

label: mnemonic operand(s) ;comment

optional opcode name

or

directive name

or

macro name

zero or more optional

3

Statements, Label

 If a label is present, the assembler defines the label
as equivalent to the address (as place markers)
 the first byte of the object code generated for that

instruction will be loaded

 Two types of labels
 Data label

 Just like the identifiers in Java and C  must be unique
 example:
count DWORD 100 ;Define a variable named count

 Code label
 Mark of a memory location for jump and loop instructions
 example:
L1: (followed by colon)

4

Statements, Label

 The programmer may subsequently use the label
as an address or as data in another instruction’s
address field

 The assembler replaces the label with the
assigned value when creating an object program

 Reasons for using a label:
 Makes a program location easier to find and remember
 Can easily be moved to correct a program
 Programmer does not have to calculate relative or

absolute memory addresses, but just uses labels as
needed
 Example: branch instructions

5

Statements, mnemonic

 The mnemonic is the name of the
operation or function of the assembly
language statement

 In the case of a machine instruction,
a mnemonic is the symbolic name
associated with a particular opcode

6

Common x86 Instruction Set
Operations

7

Data transfer

Transfer data from one location to another
If memory is involved:

Determine memory address
Perform virtual-to-actual-memory address transformation
Check cache
Initiate memory read/write

Arithmetic

May involve data transfer, before and/or after

Perform function in ALU

Set condition codes and flags

Logical Same as arithmetic

Conversion
Similar to arithmetic and logical. May involve special logic to
perform conversion

Transfer of
control

Update program counter. For subroutine call/return, manage
parameter passing and linkage

I/O
Issue command to I/O module

If memory-mapped I/O, determine memory-mapped address

x86 Instruction Set, Data Transfer

Operation Name Description

MOV Dest, Source
Move data between registers or between register and memory or
immediate to register.

XCHG Op1, Op2 Swap contents between two registers or register and memory.

PUSH Source
Decrements stack pointer (ESP register), then copies the source
operand
to the top of stack.

POP Dest Copies top of stack to destination and increments ESP.

Both operands must be the same size

8

x86 Instruction Set,

Arithmetic
Operation Name Description

ADD Dest, Source
Adds the destination and the source operand and stores the result in the
destination. Destination can be register or memory. Source can be register,
memory, or immediate.

SUB Dest, Source
Subtracts the source from the destination and stores the result in the
destination.

MUL Op
Unsigned integer multiplication of the operand by the AL, AX, or EAX register
and
stores in the register. Opcode indicates size of register.

IMUL Op Signed integer multiplication.

DIV Op
Divides unsigned the value in the AX, DX:AX, EDX:EAX, or RDX:RAX registers
(dividend) by the source operand (divisor) and stores the result in the AX
(AH:AL), DX:AX, EDX:EAX, or RDX:RAX registers.

IDIV Op Signed integer division.

INC Op Adds 1 to the destination operand, while preserving the state of the CF flag.

DEC Op
Subtracts 1 from the destination operand, while preserving the state of the CF
flag.

NEG Op
Replaces the value of operand with (0 – operand), using twos complement
representation.

CMP Op1, Op2
Compares the two operands by subtracting the second operand from the first
operand and sets the status flags in the EFLAGS register according to the
results. 9

x86 Instruction Set, Shift and
Rotate

Operation Name Description

SAL Op, Quantity
Shifts the source operand left by from 1 to 31 bit positions. Empty bit positions
are
cleared. The CF flag is loaded with the last bit shifted out of the operand.

SAR Op, Quantity
Shifts the source operand right by from 1 to 31 bit positions. Empty bit
positions are cleared if the operand is positive and set if the operand is
negative. The CF flag is loaded with the last bit shifted out of the operand.

SHR Op, Quantity
Shifts the source operand right by from 1 to 31 bit positions. Empty bit
positions are cleared and the CF flag is loaded with the last bit shifted out of the
operand.

ROL Op, Quantity
Rotate bits to the left, with wraparound. The CF flag is loaded with the last bit
shifted out of the operand.

ROR Op, Quantity
Rotate bits to the right, with wraparound. The CF flag is loaded with the last bit
shifted out of the operand.

RCL Op, Quantity
Rotate bits to the left, including the CF flag, with wraparound. This instruction
treats the CF flag as a one-bit extension on the upper end of the operand.

RCR Op, Quantity
Rotate bits to the right, including the CF flag, with wraparound. This instruction
treats the CF flag as a one-bit extension on the lower end of the operand.

10

x86 Instruction Set, Logical

Operation
Name

Description

NOT Op Inverts each bit of the operand.

AND Dest, Source
Performs a bitwise AND operation on the destination
and source operands and stores the result in the
destination operand.

OR Dest, Source
Performs a bitwise OR operation on the destination and
source operands and stores the result in the
destination operand.

XOR Dest, Source
Performs a bitwise XOR operation on the destination
and source operands and stores the result in the
destination operand.

TEST Op1, Op2
Performs a bitwise AND operation on the two operands
and sets the S, Z, and P status flags. The operands are
unchanged.

11

x86 Instruction Set, Transfer of
Control
Operation
Name

Description

CALL proc
Saves procedure linking information on the stack and branches to the called
procedure specified using the operand. The operand specifies the address of the first
instruction in the called procedure.

RET
Transfers program control to a return address located on the top of the stack. The
return is made to the instruction that follows the CALL instruction.

JMP Dest
Transfers program control to a different point in the instruction stream without
recording return information. The operand specifies the address of the instruction
being jumped to.

Jcc Dest
Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF,
SF, and ZF) and, if the flags are in the specified state (condition), performs a jump to
the target instruction specified by the destination operand. See Tables 13.8 and 13.9.

NOP
This instruction performs no operation. It is a one-byte or multi-byte NOP that takes
up space in the instruction stream but does not impact machine context, except for
the EIP register.

HLT
Stops instruction execution and places the processor in a HALT state. An enabled
interrupt, a debug exception, the BINIT# signal, the INIT# signal, or the RESET#
signal will resume execution.

WAIT
Causes the processor to repeatedly check for and handle pending, unmasked,
floating-point exceptions before proceeding.

INT Nr Interrupts current program, runs specified interrupt program

12

x86 Instruction Set,

Input/Output

Operation
Name

Description

IN Dest, Source
Copies the data from the I/O port specified by the source operand
to the destination operand, which is a register location.

INS Dest, Source
Copies the data from the I/O port specified by the source operand
to the destination operand, which is a memory location.

OUT Dest, Source
Copies the byte, word, or doubleword value from the source
register to the I/O port specified by the destination operand.

XOR Dest, Source
Copies byte, word, or doubleword from the source operand to the
I/O port specified with the destination operand. The source
operand is a memory location.

13

Statements, operands

 An assembly language statement includes zero or more
operands

 Each operand identifies:

 immediate value,

 a register value, or

 a memory location

 Typically the assembly language provides conventions:

 for distinguishing among the three types of operand
references,

 for indicating addressing mode

14

Immediate values

 Radix may be one of the following (upper or
lower case):
 h – hexadecimal
 d – decimal (by default)
 b – binary
 r – encoded real

 Hexadecimal must beginning with letter 0 
0A5h

 Optional leading + or – sign
 Enclose character in single or double quotes
 Examples:

 30d, 06Ah, 42, 1101b

 'A', "x"

15

Intel x86 Program Execution
Registers

 statement may refer
to a register
operand by name.

 The assembler
translates the
symbolic name into
the binary identifier
for the register

0

AXAH AL

BH BL

CH CL

DH DL

BX

CX

DX

EAX (000)

EBX (011)

ECX (001)

EDX (010)

16-bit 32-bit

ESI (110)

EDI (111)

EBP (101)

ESP (100)

31
Generall-Purpose Registers

Segment Registers
0

CS

DS

SS

ES

FS

GS

15

Figure 15.3 Intel x86 Program Execution Registers

16

Identifiers and Reserved Words

 Identifiers

 Contains 1-247 characters, including digits

 Not case sensitive

 The first character must be a letter, _ , @, ?, or $

 examples: var1, $first, _main

 Reserved words cannot be used as identifiers

 Instruction mnemonics, directives, register names,
type attributes, operators, predefined symbols

18

Statements, comment

 All assembly languages allow the
placement of comments in the
program

 A comment can either :

 occur at the right-hand end of
an assembly statement or

 occupy and entire test line

 The comment begins with a special
character that signals to the
assembler that the rest of the line is
a comment and is to be ignored by
the assembler

 the x86 architecture use a
semicolon (;) for the special
character

19

Getting started with MASM

 Download Visual studio

 Setup Visual studio:
https://www.youtube.com/watch?v=-fCyvipptZU

 Start without debugging

 C++ configuration

20

https://www.youtube.com/watch?v=-fCyvipptZU

Program Template

TITLE Program Template (Template.asm)

; Program Description:

; Author:

; Creation Date:

; Revisions:

; Date: Modified by:

.data

; (insert variables here)

.code

main PROC

; (insert executable instructions here)

;exit

main ENDP

; (insert additional procedures here)

END main

Program
entry point

startup procedure
21

Write an assembly program to add the values 5 and 6 and
store the value in eAx

22

TITLE Add (AddTwo.asm)

; This program adds two 32-bit integers.

.386

.model flat, stdcall

.stack 4096

ExitProcess proto, dwExitCode:dword

DumpRegs PROTO

.code

main proc

mov eax, 5

add eax, 6

invoke ExitProcess, 0

main endp

end main 23

Example Output

Program output, showing registers and flags:

EAX = 0000000B EBX = 7EFDE000 ECX = 00000000 EDX = 00401005

ESI = 00000000 EDI = 00000000 EIP = 00401018 ESP = 0018FF8C

EBP = 0018FF94 EFL = 00000200

OV = 0 UP = 0 EI = 1 PL = 0 ZR = 0 AC = 0 PE = 0 CY = 0

24

Statements, Pseudo-instructions

 Pseudo-instructions/ directives are statements
which are:
 not real x86 machine instructions.

 not directly translated into machine language
instructions

 instructions to the assembler to perform specified
actions during the assembly process

 Examples include:
 Define constants
 Designate areas of memory for data storage

 MASM .data, .DATA, and .Data are the same

 Initialize areas of memory
 Place tables or other fixed data in memory
 Allow references to other programs

25

Intrinsic Data Types

26

Data Definition Statement

 A data definition statement sets aside storage in
memory for a variable.

 May optionally assign a name (label) to the data

 Syntax:

[name] directive initializer [,initializer] . . .

value1 BYTE 10

 All initializers become binary data in memory

27

Examples

value1 BYTE 'A' ; character constant

value2 BYTE 0 ; smallest unsigned byte

value3 BYTE 255 ; largest unsigned byte

value4 SBYTE -128 ; smallest signed byte

value5 SBYTE +127 ; largest signed byte

value6 BYTE ? ; uninitialized byte

word4 WORD "AB" ; double characters

val1 DWORD 12345678h ; unsigned

val4 SDWORD –30.4 ; signed

MASM does not prevent you from initializing a BYTE with a negative value, but

it's considered poor style.

28

Write an assembly program to add three DWORD variables
named x, y and z

No more than one memory
operand permitted

29

; AddVariables.asm - Chapter 3 example.

.386

.model flat,stdcall

.stack 4096

ExitProcess proto,dwExitCode:dword

.data

firstval dword 20002000h

secondval dword 11111111h

thirdval dword 22222222h

sum dword 0

.code

main proc

mov eax, firstval

add eax, secondval

add eax, thirdval

mov sum, eax

invoke ExitProcess,0

main endp

end main

Adding

Variables to the

AddSub

Program

30

Arithmetic Expressions

 The compilers translate mathematical expressions into
assembly language. You can do it also.

 For example:

Rval = -Xval + (Yval – Zval)

31

Rval DWORD ?

Xval DWORD 26

Yval DWORD 30

Zval DWORD 40

.code

mov eax,Xval

neg eax ; EAX = -26

mov ebx,Yval

sub ebx,Zval ; EBX = -10

add eax,ebx

mov Rval,eax ; -36

Symbolic Constants

 A symbolic constant (or symbol definition) is created by
associating an identifier (a symbol) with an integer expression

 Symbols do not reserve storage.

 When a program is assembled, all occurrences of a symbol
are replaced by expression

 they cannot change at runtime.

 Syntax : name = expression

 name is called a symbolic constant

 The expression is a 32-bit integer (expression or constant)

32

COUNT = 500

...

mov ax,COUNT

