CS 16000-01-02/03 Fall Semester 2025 August 25, 2025

Practice Lab

(10 points)
This set of exercises is posted for practice purposes only. Work on the code during the time at the lab. Complete the work. Feel free to ask for hints in the lab. You are required to submit your code for this Practice Lab. This work will be graded.
Distribute on August 25, 2025
Due before August 31, 2025 (Sunday) at 11:59 P.M. (a minute before 12:00 midnight)
Requirements

The purpose of this practice is to

· solidify your work with the Integrated Development Environment (IDE) editor
· gain more experience with printing/displaying messages to the console
· use error-correcting routines
· apply Java operators
· declare the used variables
· write and call methods (modules)
Preliminaries

1. Create a Java project. The project's name is your choice (The project name is recommended not to begin with an uppercase or lowercase character, e.g., lab00_practiceLab).
2.
Add a Java class to your project. Choose your class name at your disposal. Class name begins with an uppercase letter; e.g., PracticeLab. Make sure that the class contains the method main(). We shall call it the main method. Furthermore, the word main is a reserved word.
3. Add the comment block: Add the following comment block to the beginning of your Java class:
/*

* <your name>

* CS 16000-01 – 02/03, Fall Semester 2025 (comments: list your lab session either 02 or 03 only.)
* Practice Lab

*/
public class PracticeLab
{

public static void main(String [] args)

{

}
}

 4. Do NOT close your Eclipse IDE for Java Developers after these steps. IDE stands for Integrated Development Environment. Let's go to your workspace and identify where your project is. Observe all the folders whose name is the same as your given project name and all the files whose name is the same as your given class name.
Go back to the Eclipse IDE editor you created. Continue to work on the following exercise using your Eclipse IDE editor. If you are stuck with some of the puzzling tasks below, try first to dig up the answers from the book or lecture notes in Ch 02. If that fails, ask for help.
Ensure that all your code for variable declaration statements appears as a single variable declaration block at the top of a method, such as the main() method. As an example of this assignment, do NOT state your variable declaration outside the main() method.
Adding two comments at the end of two curly braces to signify the end of the main() method and the end of the class PracticeLab is a good practice. A comment line always begins with //.
public class PracticeLab

{

public static void main(String [] args)

{

//declare variables

String firstName = “Charles”;

String lastName = “Dickens”;

…

int iEleven = 11;

double dEleven = 11;

etc.

System.out.print(…) ;

System.out.println(….);

System.out.printf(…) ;

}//end of main()
}//end of PracticeLab
Problems
1. Declare and assign these variables as shown (all your code must appear in the body of the main() method:

String firstName = “Charles”; //firstName is a reference variable of the String class.
String lastName = “Dickens”;

In addition, declare and assign to a String reference variable middleName, John Huffam.

2. In the main() method, create a method call statement to call a method nameDisplay() which prints (i.e., displays) data to the console, using print() and println() methods. These print() and println() are method call statements, which pass the string values as arguments to the methods print(…) and println(…) that are provided in an object “out” of the class “System”. These arguments are also called actual parameters.
3. Use + as a concatenation operator. Use an escape sequence \n for advancing the cursor to the following line for subsequent printing. The name of this escape sequence \n is newline. A space is a character; therefore, a double quotation of a single space, “ ”, refers to a string containing a space. Other escape sequences are \t (horizontal tab), \\ (backslash), \" (double quote), and \’ (single quote).
The method nameDisplay() must contain the following tasks. This method must appear between the “}//end of main()” and “}//end of class PracticeLab.” Then, execute the program and observe the results that are displayed.

System.out.print("Charles");

System.out.print("Dickens"); //observe: the two statements output CharlesDickens|

System.out.print("Charles "); //the two statements output Charles Dickens followed by the

System.out.print("Dickens\n"); //the cursor | at the beginning of the following line.

System.out.print("Charles" + " ");

System.out.print(“Dickens\n”);

System.out.println("Charles" + "Dickens"); //Outputs CharlesDickens with | at the beginning

 //of the following line.

System.out.println("Charles Dickens");

System.out.println("Charles" + " " + "Dickens");

System.out.println("Charles " + "John Huffam" + " " + "Dickens");
The program code is as follows:

public class PracticeLab

{

public static void main(String [] args)

{

//declared variables block
String firstName = “Charles”; //need to replace “ ” with " "
String lastName = “Dickens”;

//declare here the middleName to be John Huffam.

//Wrote a method call statement without passing a value or a variable as

//an argument. This method call statement does not have any arguments.

 //The argument is also called the actual parameter.

nameDisplay();

 …

}//end of main

//programmer-defined nameDisplay() method. The double quotation must be " ".

public static void nameDisplay()
{

System.out.print(“Charles”);

System.out.print(“Dickens”);

System.out.print(“Charles ”);

System.out.print(“Dickens\n”);

System.out.print(“Charles” + “ ”);

System.out.print(“Dickens\n”);

System.out.println(“Charles” + “Dickens);

System.out.println(“Charles Dickens”);

System.out.println(“Charles” + “ ” + “Dickens”);

System.out.println(“Charles ” + “John Huffam” + “ ” + “Dickens”);
}//end of nameDisplay()
}//end of PracticeLab
4. In the method main(), create another method call statement

nameDisplay(firstName, middleName, lastName);

to call a method
public static String nameDisplay(String fName, String mName, String lastName) {
 //body of the method nameDisplay()

return “End of Tasks!”;

} //end of nameDisplay(String…String…String…)

which prints (or displays) to the console using print(), println() and printf() methods. This method call statement passes the string values of three variables as actual arguments (also called actual parameters) to the method nameDisplay(String fName, String mName, String lastName), which has three formal parameters (also called formal arguments). When passing the arguments to the method with parameters, the argument’s data type must be compatible with the parameter’s data type. For primitive data types, Java performs a widening conversion if the argument’s data type is ranked lower than the parameter variable’s data type.

Create code for the called method with three formal parameters, fName, mName, and lastName:
 nameDisplay(String fName, String mName, String lastName)

which will carry out the following tasks: (Use %s as a string format.)
//observe the outputs from the print(), println(), and printf() methods.

System.out.println(); //leave a line space. Go to the following line.
System.out.print(fName); //fName is a programmer-defined reference variable.
System.out.print(mName);

System.out.print(“ ” + lastName + “\n”);

System.out.print(fName + “ ” + mName + “ ” + lastName + “\n”);

System.out.println(fName + mName + lastName);

System.out.println(lastName + “, ” + fName + “ ” + mName);

System.out.printf(“My full name is %s %s %s.\n”, fName, mName, lastName);

System.out.printf(“My name is %s, %s %s.\n”, lastName, fName, mName);

System.out.printf(“My name is \“%s, %s %s\”.\n”, lastName, fName, mName);
Execute the program and then observe the displayed results on the console. Errors of improper spacing between the first name, middle name, and last name. Correct these errors according to the following:
Add the missing code to the third print statement such that a space is inserted in the output between the first and the middle name.
Add the missing code to the sixth print statement to print (display) the first name, middle name, and then the last name to the console with the proper space in between.
Review carefully the output of the ninth print statement displayed on the console.

My name is "Dickens, Charles John Huffam."
Add code to the tenth print statement to print (display) the following output to the console.
 "My name is "Dickens, Charles John Huffam.""
 In the main() method, add another code

 System.out.println(nameDisplay(firstName, middleName, lastName));
Execute the program, and then observe the output generated by this statement.

The final statement of the called method nameDisplay(firstName, middleName, lastName) is

return “End of Tasks!”;

That means, after the called method prints (or displays) the name of Charles John-Huffam Dickens in various forms, this called method returns to the main program a proper location with a value (i.e., the address of a location where the string “End of Tasks!” is located.)
5. In the main(), create another method call statement

System.out.println(“\nCheck whether the name is Charles John-Huffam Dickens.”);

nameDisplay(firstName, “John-Huffam”, lastName);
to call the method again

 public static String nameDisplay(String fName, String mName, String lastName){ }
which prints (i.e., displays) on the console. Execute it and observe the displayed results.
6. In the main(), create another method call statement
nameDisplay(lastName);

 to call the method

public static void nameDisplay(String fName){ … }
Add to the called method the following declaration statement in its declaration block:

String mName = “J.H.”;
and the following println() statement.
System.out.println(firstName + “ ” + mName + “ ” + “Dickens” + “!”);
which displays on the console:

 Charles J.H. Dickens!
7. In the method main(), write a method call statement,

divideDisplay();
Before the method call statement, write a print statement to yield a line space on the console. The called method is
public static void divideDisplay() { … }

which (a) uses println() to yield a line space on the console; (b) then uses printf() to print expressions 1/2 11/3 4/5 1/2. 11/3. 4./5 to the console in a single line with a tab (\t) between them; (c) uses println() to print the results of these expressions; (d) yields a line space, and (e) finally uses printf() to print the result of each of the expression such as 1/2 = 0, 11/3 = 0, …
See Figure 1 showing the output.
(leave a line space here)
1/2
11/3
4/5
1/2.
11/3.

4./5

0
3
0
0.5
3.6666666666666665
0.8

(leave a line space here)
1/2 = 0, 11/3 = 3, 4/5 = 0, 1/2. = 0.5, 11/3. = 3.6666666666666665, 4./5 = 0.800000

Figure 1
Then, use the print() method,
System.out.print();

to write a comment block that describes your experience with the above printing. As well as using the string concatenation operator +, use both \n and \t escape sequences to advance the cursor to the next line for subsequent printing and to cause the cursor to skip over the next tab stop, respectively.
(Hints for stating your comment block: What are the types of division? Why are some of them zero? Why are some of the results of floating-point numbers? What is the escape sequence character for a tab? Use the + operator (also known as the string concatenation operator) to display multiple items in your print statement.)

The output is:

My experience:

The first three are integer divisions since both operands of

the divisions are integers. Thus, the fractional part of the result

is discarded. Each division operation returns a floating-point value of

 double data type for the last three since 2., 3., and 4. are floating-point
 numbers of double data type. Furthermore, before the division operator

 occurs, the compiler converts 1, 11, and 5 into floating-point values of
 the double data type. Such a conversion is called a widening conversion.

The + here is a concatenation operation. The symbol \t is an escape sequence,
 which uses the cursor to skip over to the next tab stop.
8. Declare and assign the following variables in the variable declaration block of the main() method: (Require to enter the subsequent declaration of variables with assigned values right after declaring the three variables of problem 1.)
int iEleven = 11;
int iThree = 3;
double dEleven = 11;
double dThree = 3;
9. In the main() method, write a method call statement,

divideDisplay(iEleven, dEleven, iThree, dThree);

and the called method,

public static void divideDisplay(int i11, double d11, int i3, double d3) { }

Write a printf() statement that skips two line spaces and then determines the results for the following expressions.

ill/i3, i3/i11, d3/ill, d11/i3, i3/d11.
Then, write ONE print statement that prints/displays the values of the following expressions to the console in three single lines with a tab (or three spaces) between them. The first line contains the values of the first five expressions, the second line contains the values of the second four expressions, and the third line contains the values of the last four expressions.
iEleven/iThree iThree/iEleven dThree/iEleven dEleven/iThree iThree/dEleven
iEleven/dThree dEleven/dThree iEleven/(double)iThree (double)iEleven/iThree (double)(iEleven/iThree) (double) (iThree/iEleven) (int)(dEleven/dThree) (int)(dThree/dEleven)
Note that (double) and (int) are cast operators.

The console displays the result, which is as follows:
 Figure 2: Solution for Problem 8
ill/i3 = 3
i3/i11 = 0
d3/ill = 0.272727
d11/i3 = 3.666667
i3/d11 = 0.272727

3
0
0.2727272727272727
3.6666666666666665
0.2727272727272727

3.6666666666666665
3.6666666666666665
3.6666666666666665
3.6666666666666665

3.0
0.0
3
0
10. Using again the same variables as above and the same divideDisplay method of problem 8,
write ONE print statement to display to the console the values of the following expressions, each in a new line:

(int)iEleven/dThree (int)(iEleven/dThree) (int)(iEleven/dThree *1000)/1000.
The console displays the result, which is as follows:
Figure 3: Solution for problem 9
(int)iEleven/dThree = 3.6666666666666665
(int)(iEleven/dThree) = 3
(int)(iEleven/dThree *1000)/1000. = 3.666
11. In the main method, write a method call statement,

squareCubeRoot(7);

and the called method,

public static void squareCubeRoot(int num){ }

Write two statements to calculate and print/display the output of the expression, the square root of 7, to the console; and then, to calculate and print/display the output of the expression, the cubic root of 7, to the console:

Math.sqrt(7) Math.cbrt(7)

For your output, it has to be in the following format, as shown in Figure 4:

 sqrt(7) = 2.6457513110645907

 cbrt(7) = 1.9129311827723892

Figure 4
An example is:
System.out.println(“sqrt(” + num + “) = ” + Math.sqrt(num));
12. In the same called method,

private static void squareCubeRoot(int num){ }

repeats the printing of the two expressions above, such that both numbers are chopped (i.e., truncated by the program) to two digits after the point. See Figure 5 for the output: [Hints: use the printf method with format %.2f for the floating-point value, or format %d for the integer value.]
 sqrt(7) = 2.65

 cbrt(7) = 1.91
 Figure 5
Again, print the two expressions Math.sqrt(7) and Math.cbrt(7) to the console to four digits after the point.

An example is:

System.out.printf(“sqrt(%d) = %.2f.”, num, Math.sqrt(num));

13. Back to the main method, continue to declare and assign the variables as shown: (Requires entering the following variable declarations right after the two variable declarations of problems 1 and 6.)
int iNumber = 8;

int iPrime = 5;

14. In the main method, write a method call statement

computeDisplay(iEleven, iThree, iNumber, iPrime);
which passes the values of iThree, iEleven, iNumber, and iPrime to the called method
private static void computeDisplay(int ill, int i13, int iNumber, int iPrime){ }

which compute the following arithmetic expressions and then print/display their values to the console. Compare the output to your hand calculations:
iEleven / 2 * 2

iThree * iNumber + iEleven / iPrime

iThree / iEleven – iNumber + iThree * iPrime
Your output to the console has to be displayed in the following format, as shown in Figure 6.
iEleven / 2 * 2 = 10

iThree * iNumber + iEleven / iPrime = …
iThree / iEleven – iNumber + iThree * iPrime = …

Figure 6.

15. Using the called method in problem 13, continue to compute the following expressions:

iEleven / (2 * 2)

iThree * (iNumber + iEleven) / iPrime

iThree / (iEleven – iNumber) + iThree * iPrime

iThree / (iEleven – iNumber + iThree) * iPrime

iThree / iEleven – (iNumber + iThree) * iPrime

Your output to the console has to be displayed in the following format, as shown in Figure 7.

Use the printf() method to get the tasks done.
iEleven / (2 * 2) = …

iThree * (iNumber + iEleven) / iPrime = …

iThree / (iEleven – iNumber) + iThree * iPrime = …
iThree / (iEleven – iNumber + iThree) * iPrime = …
iThree / iEleven – (iNumber + iThree) * iPrime = …

Figure 7.

16. For each of the called methods, create a documentation comment by entering /** and ending with */ before the method header of the called method. The Javadoc program can read and process the documentation comments from the JDK. You describe each parameter using an @param tag. For example, you can provide the parameter fName with a description that it is a reference variable of the String class and is referred to as the first name.

 /**

 * @param fName
String class, first name

 * @param mName
String class, middle name

 * @param lastName String class

 */
/filed on lab00_practicelLab Q 08252025
1

