Visualizing the Sum of an Infinite Geometric Series

We have seen that if $0<r<1$ the geometric series $a+a r+a r^{2}+a r^{3}+\ldots$ converges to the point w, where w is the solution to the equation $r w+a=w$, which is $w=\frac{a}{1-r}$.

A way to visualize this convergence is as follows: Sketch the graphs of $y=r x+a$ and $y=x$.
Notice the point of intersection is the solution to $r x+a=x$.

Notice how the terms of the sequence a_{n} and the partial sums S_{n} appear in the above.
A series is said to converge to L when the sequence of partial sums converge to L. Assume $r>0$. Complete.

1. When the slope of $y=r x+a$ is \qquad the slope of $y=x$, then r \qquad 1 and the lines "converge" at $w=$

$$
\overline{\{<,>, \geq, \leq\}}
$$ $\{<,>, \geq, \leq\}$

In this case we have $\sum_{k=1}^{\infty} a r^{k-1}=a+a r+a r^{2}+\cdots=\frac{a}{1-r}$
If instead of $k=1$, we started at $k=4$, i.e., $\sum_{k=4}^{\infty} a r^{k-1}=a r^{3}+a r^{4}+a r^{5} \cdots$, what would change? Is L independent of the
seed value in the recursive process?
2. When the slope of $y=r x+a$ is \qquad the slope of $y=x$, then r \qquad 1 and the lines \qquad .

In this case we have $\sum_{k=1}^{\infty} a r^{k-1}=a+a r+a r^{2}+\cdots=\infty$

