Visualizing the Sum of an Infinite Geometric Series
We have seen that if 0 < r < 1 the geometric series a + ar + ar’+ ar® + ... converges to the point w,

. . . C a
where w is the solution to the equation 7w + a = w, which is w = P
—r

A way to visualize this convergence is as follows: Sketch the graphs of y =rx+ a and y = x.
Notice the point of intersection is the solution to rx + a = x.
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Notice how the terms of the sequence a, and the partial sums S, appear in the above.
A series is said to converge to L when the sequence of partial sums converge to L. Assume » > (. Complete.

1. When the slope of y=rx +a is the slope of y = x, then r 1 and the lines “converge” at w =
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In this case we have Zar =a+ar+ar +--=——
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If instead of k=1, we started at k=4 , i.e., Z ar* ' =ar’ +art +ar’ - , what would change? Is L independent of the
seed value in the recursive process? k=4

2. When the slope of y=rx + a is the slope of y = x, then r 1 and the lines
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