Visualizing the Sum of an Infinite Geometric Series

We have seen that if 0 < r < 1 the geometric series $a + ar + ar^2 + ar^3 + ...$ converges to the point *w*, where *w* is the solution to the equation rw + a = w, which is $w = \frac{a}{1 - r}$.

A way to visualize this convergence is as follows: Sketch the graphs of y = rx + a and y = x. Notice the point of intersection is the solution to rx + a = x.

Notice how the terms of the sequence a_n and the partial sums S_n appear in the above. A series is said to converge to L when the sequence of partial sums converge to L. Assume r > 0. Complete.

1. When the slope of y = rx + a is $\frac{1}{\{<, >, \ge, \le\}}$ the slope of y = x, then r = 1 and the lines "converge" at w = 1In this case we have $\sum_{k=1}^{\infty} ar^{k-1} = a + ar + ar^2 + \dots = \frac{a}{1-r}$

If instead of k = 1, we started at k = 4, i.e., $\sum_{k=4}^{\infty} ar^{k-1} = ar^3 + ar^4 + ar^5 \cdots$, what would change? Is *L* independent of the seed value in the recursive process?

2. When the slope of y = rx + a is the slope of y = x, then $r_{\{\langle , \rangle, \geq, \leq\}}$ and the lines In this case we have $\sum_{k=1}^{\infty} ar^{k-1} = a + ar + ar^2 + \dots = \infty$