Visualizing Terms and Partial Sums of Series

Number of	<i>n</i> th term,	<i>n</i> th partial sum,
terms, <i>n</i>	$a_n = 1$	$S_n = \sum_{k=1}^n 1$
1	$a_1 = 1$	$S_1 = 1$
2	$a_2 = 1$	$S_2 = 1 + 1 = 2$
3	$a_3 = 1$	$S_3 = 1 + 1 + 1 = 3$
4	$a_4 =$	$S_4 =$
:	•	•
100	$a_{100} =$	$S_{100} =$
:	•	:
т	$a_m =$	$S_m =$

Number of terms, <i>n</i>	<i>n</i> th term, $a_n = 2n$	<i>n</i> th partial sum, $S_n = \sum_{i=1}^{n} 2k$
1	$a_1 = 2$	$S_1 = 2$
2	$a_2 = 4$	$S_2 = 2 + 4 = 6$
3	$a_3 = 6$	$S_3 = 2 + 4 + 6 = 12$
4	$a_4 =$	$S_4 =$

3. Complete the last row. If we merely scroll the table, it looks like $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \frac{k^2 + 1}{k}$ probably $\frac{1}{\{\text{converges, diverges}\}}$.

Number of	<i>n</i> th term,	<i>n</i> th partial sum,
terms, <i>n</i>	$a_n = \frac{n^2 + 1}{n}$	$S_{n=}\sum_{k=1}^n \frac{k^2+1}{k}$
1	$a_1 = \frac{2}{1} = 2$	$S_1 = 2$
2	$a_2 = \frac{5}{2}$	$S_2 = \frac{9}{2} = 4.5$
3	$a_3 = \frac{10}{3}$	$S_3 = \frac{47}{6} \approx 7.8333$
4	$a_4 =$	$S_4 = \frac{145}{12} \approx 12.0833$

If you want more values, you can put the expression $\sum_{k=1}^{x} \frac{k^2 + 1}{k}$ in Y1, then view a table.

Plot1 Plot2 Plot3	
$\mathbf{INY_1} \blacksquare \sum_{K=1}^{N} \left(\frac{K^2 + 1}{K} \right)$	

4. What is true about $\lim_{n\to\infty} a_n$ for each of these three series on this page? Does this affect $\lim_{n\to\infty} S_n$?

5. Complete tl	he last row. If we	e merely scroll the table, it looks like $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \frac{1 - \cos \pi k}{k}$ probably [converges, diverges]	
	Г		
Number of terms, <i>n</i>	<i>n</i> th term, $1 - \cos \pi n$	<i>n</i> th partial sum, $n = 1 \cos \pi k$	
<i>terms</i> , <i>n</i>	$a_n = \frac{1 - \cos \pi n}{n}$	$S_n \sum_{k=1}^n \frac{1 - \cos \pi k}{k}$	
1	n		
1	$a_1 = \frac{2}{1} = 2$	$S_1 = 2$	
2	$a_2 = 0$ $a_3 = \frac{2}{3}$	$S_2 = 2$	
3	$a_3 = \frac{2}{3}$	$S_3 = \frac{8}{3}$	
4	$a_4 = 0$	$S_4 = \frac{8}{3}$	
5	$a_5 = \frac{2}{5}$	$S_5 = \frac{46}{15}$	
6	$a_6 = 0$	$S_6 = \frac{46}{15}$	
:	:		
99	$a_{99} =$	$S_{99} = \frac{6400711399252571342562758751832284129928}{1089380862964257455695840764614254743075}$	
	he last rows. If w	ve merely scroll the table, it looks like $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \frac{-3}{(-2)^k}$ probably	
Number of	<i>n</i> th term,	<i>n</i> th partial sum,	
terms, <i>n</i>	$a_n -3$	$S_n = \sum_{n=1}^{n} \frac{-3}{n}$	
	$(-2)^n$	$\sum_{k=1}^{\infty} (-2)^k$	
1	$a_1 = \frac{3}{2}$	$S_1 = \frac{3}{2}$	
2	$a_2 = -\frac{3}{4}$	$S_n = \sum_{k=1}^n \frac{-3}{(-2)^k}$ $S_1 = \frac{3}{2}$ $S_2 = \frac{3}{4}$	
3	$a_3 = \frac{3}{8}$		
4			
5	$a_4 = -\frac{3}{16}$ $a_5 = \frac{3}{32}$	$S_5 = \frac{33}{32}$	
6	$a_6 = -\frac{3}{(2)}$	$S_6 = \frac{()}{()}$	
7	$a_7 = \frac{3}{(2^{-3})}$		
,	<i>u</i> / ()	$S_7 = \frac{128}{128}$ NORMAL FLOAT AUTO REAL RADIAN MP Plot1 Plot2 Plot3	
		$\prod_{k=1}^{k} \frac{-3}{(-2)^k} \text{ in } Y1, \text{ then view a table. } \mathbb{I} = \mathbb{I} \left\{ \frac{3}{(-2)^k} \right\}$	•
7. If we mere	ly scroll the table	e, it looks like $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \frac{\ln k}{k}$ probably {converges, diverges} · Plot1 Plot2 Plot3	
Number of	<i>n</i> th term,	<i>n</i> th partial sum,	
terms, <i>n</i>	$a_n = \frac{\ln n}{2}$	$S_n = \sum_{k=1}^{\infty} \frac{\ln k}{k}$	
	n	$\sum_{k=1}^{m} k$	
1	$a_1 = \frac{\ln 1}{1} = 0$	$S_1 = 0$	
2	$a_2 = \frac{\ln 2}{2}$	$S_2 = \frac{\ln 2}{2} \approx 0.3466$	
3	$a_3 = \frac{\ln 3}{3}$	$S_3 = \frac{\ln 72}{6} \approx 0.7128$	
4	$a_4 = \frac{\ln 4}{4}$	$S_4 = \frac{\ln 24}{3} \approx 1.0594$	
L	· ·		

8. What is true about $\lim_{n\to\infty} a_n$ for each of these three series on this page? Does this affect $\lim_{n\to\infty} S_n$?

9. Click **<u>HERE</u>** for four additional examples, two of which are very famous.

10. Rhino Bonus

The infinite series of the reciprocals of the squares of positive integers was known to converge, but no one could find the exact value until 1735, when Euler showed that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \cdots = \frac{\pi^2}{6}$. The mathematical world rejoiced. See below why this discovery was a gift that kept on giving.

(+0.5) **a.** Use the fact that
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{6}$$
 to find the exact value of $\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \frac{1}{8^2} + \dots$
Show work below.

(+0.5) **b.** Use the fact that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{6}$ and part **a** to find the exact value of $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$

Show work below.