Using Proportional Reasoning (aka Multiplicative Reasoning) to Find the Area of a Sector of a Circle

1. Insert a fraction in the blanks: The shaded area A is \qquad of the total area πr^{2}.

The angle θ is \qquad way around the entire circle.

Insert exact values in the blanks: The shaded area $A=$ \qquad and the angle $\theta=$ \qquad (radians).
2. Insert a fraction in the blanks: The shaded area A is \qquad of the total area.

The angle θ is \qquad way around the entire circle.

Insert exact values in the blanks: The shaded area $A=$ \qquad and the angle $\theta=$ \qquad (radians).

3. Insert a fraction in the blanks: The shaded area A is \qquad of the total area.

The angle θ is \qquad way around the entire circle.

Insert exact values in the blanks: The shaded area $A=$ \qquad and the angle $\theta=$ \qquad (radians).

4. Insert a fraction in the blanks: The shaded area A is \qquad of the total area.

The angle θ is \qquad way around the entire circle.

Insert exact values in the blanks: The shaded area $A=$ \qquad and the angle $\theta=$ \qquad (radians).
5. The fraction of the shaded area A to the total area is $\frac{A}{\pi r^{2}}$.

The fraction of the angle θ to the total angle 2π around the entire circle is $\frac{\theta}{2 \pi}$.

Write the area A of the sector shown in terms of θ and r.

Check that your expression works for the previous examples.

