Using Proportional Reasoning (aka Multiplicative Reasoning) to Find the Area of a Sector of a Circle

1.	Insert a fraction in the blanks: The shaded area A is of the total area πr^2 .
	The angle θ is way around the entire circle.
	Insert exact values in the blanks: The shaded area $A = $ and the angle $\theta = $ (radians).
2.	Insert a fraction in the blanks: The shaded area A is of the total area. The angle θ is way around the entire circle.
	Insert exact values in the blanks: The shaded area $A = $ and the angle $\theta = $ (radians).
3.	Insert a fraction in the blanks: The shaded area A is of the total area. The angle θ is way around the entire circle.
	Insert exact values in the blanks: The shaded area $A = $ and the angle $\theta = $ (radians).
4.	Insert a fraction in the blanks: The shaded area A is of the total area. The angle θ is way around the entire circle.
	Insert exact values in the blanks: The shaded area $A = $ and the angle $\theta = $ (radians).
5.	The fraction of the shaded area A to the total area is $\frac{A}{\pi r^2}$.
	The fraction of the angle θ to the total angle 2π around the entire circle is $\frac{\theta}{2\pi}$.
	Write the area A of the sector shown in terms of θ and r. Check that your expression works for the previous examples.