To Infinity and Beyond!

Newton's law of universal gravitation states that every particle attracts every other particle in the universe with a force that is directly proportional to the product of their masses and inversely proportional

We know that the force $F(x)$ on a satellite varies with its distance x from the center of the earth according to $F(x)=\frac{G M m}{x^{2}}$, where G is the gravitational constant, i.e., $G=6.67 \cdot 10^{-11}$ Newtons $\mathrm{kg}^{-2} \mathrm{~m}^{2}$,
M is the mass of the earth in kg , i.e., $M=5.97 \cdot 10^{24} \mathrm{~kg}$, m is the mass of the satellite in kg , and x is the distance in meters between them.
a. As a satellite is lifted off into space and x increases, think about what the graph of $F(x)$ would look like.
i. Make a sketch.

Recall F is the weight of the satellite when it is x meters from the center of the earth.

ii. Suppose a satellite is at the surface of the earth. Assume the radius of the earth is $R=6.371 \cdot 10^{6} \mathrm{~m}$. Calculate the gravitational force, in Newtons, acting on the satellite at the earth's surface.

Report as a multiple of the mass m (in kg) of the satellite.
Round your value in the box to two decimal places.

iii. Calculate the gravitational force, in Newtons, acting on a satellite when it is an altitude of $d=1.48 \cdot 10^{6} \mathrm{~m}$ above the earth's surface.

Report as a multiple of the mass m (in kg) of the satellite.
Round your value in the box to two decimal places

b. Set up the integral and evaluate it to find the work required, in Joules, to lift a $1325-\mathrm{kg}$ satellite from the earth's surface to an altitude of $d=1.48 \cdot 10^{6} \mathrm{~m}$ above the earth's surface.
(Round to two decimal places.)
c. Set up the integral and evaluate it to find the work required, in Joules, to lift a $1325-\mathrm{kg}$ satellite from the earth's surface to outer space. Use correct limit notation.
(Round to two decimal places.)

