lame			
able:	Group:		

Thomas the Tank Engine's Maximum Speed

Turn in the following by the beginning of the class Thursday, Jan. 12 to receive +2 Rhino bonus participation points. Thomas the Tank Engine is d = f(t) miles from his boss Sir Topham Hatt, where t is given in hours. The graph of d = f(t) is shown for $0 \le t \le 7$. See his trip animated at users.pfw.edu/lamaster/ma165/ThomasTrip.htm

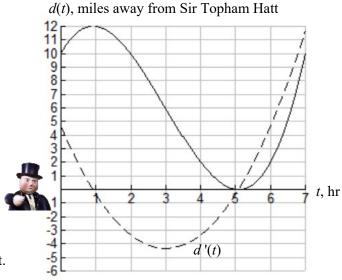
You may assume only the following

d'(t) is quadratic with axis of symmetry at t = 3.

Note: $d'(1) \neq 0$ and $d'(5) \neq 0$.

Below is a table of values for d(t).

Х	Υı		
0	10		
1	12		
2	10		
3	6		
4	2		
5	0		
6	2		
7	10		
8	26		
9	52		
10	90		



1. Find a formula for d(t) using the FTC. Show work for credit.

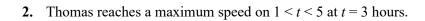
We have $\int_0^t d'(x)dx = d(t) - d(0)$ so, by subtraction,

$$d(t) = \int_0^t d'(x)dx + d(0)$$
, where $d'(x) = a(x-3)^2 + k$ for some constants a and k .

Report exact values of the coefficients. Check your answer with a grapher.

Your formula need **not** be in expanded form.

$$d(t) = \underline{\hspace{1cm}}$$



a. Report the exact value, in miles per hour, of that maximum speed.

_____ mph

b. Report, **approximate** to 0.001 hours, the two other times at which he reaches that maximum speed in part $\mathbf{2a}$ on 0 < t < 7. You can solve graphically. No work needs to be shown.

t =_____hrs, _____hrs

Report to three decimal places.

