\qquad
Table: \qquad Group: \qquad

Thomas the Tank Engine's Maximum Speed

Turn in the following by the beginning of the class Thursday, Jan. 12 to receive +2 Rhino bonus participation points. Thomas the Tank Engine is $d=f(t)$ miles from his boss Sir Topham Hatt, where t is given in hours. The graph of $d=f(t)$ is shown for $0 \leq t \leq 7$. See his trip animated at users.pfw.edu/lamaster/ma165/ThomasTrip.htm

You may assume only the following
$d(t)$, miles away from Sir Topham Hatt
$d^{\prime}(t)$ is quadratic with axis of symmetry at $t=3$.
Note: $d^{\prime}(1) \neq 0$ and $d^{\prime}(5) \neq 0$.
Below is a table of values for $d(t)$.

$x=3$

1. Find a formula for $d(t)$ using the FTC. Show work for credit.
 We have $\int_{0}^{t} d^{\prime}(x) d x=d(t)-d(0)$ so, by subtraction,

$$
d(t)=\int_{0}^{t} d^{\prime}(x) d x+d(0), \text { where } d^{\prime}(x)=a(x-3)^{2}+k \text { for some constants } a \text { and } k .
$$

Report exact values of the coefficients. Check your answer with a grapher.
Your formula need not be in expanded form.
$d(t)=$ \qquad
2. Thomas reaches a maximum speed on $1<t<5$ at $t=3$ hours.
a. Report the exact value, in miles per hour, of that maximum speed.
\qquad
b. Report, approximate to 0.001 hours, the two other times at which he reaches that maximum speed in part 2a on $0<t<7$.
You can solve graphically. No work needs to be shown.
$t=$ \qquad hrs, \qquad hrs
Report to three decimal places.

$d(t)$, miles away from Sir Topham Hatt

