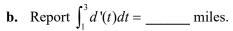
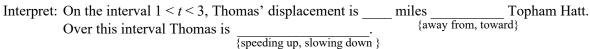
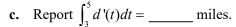
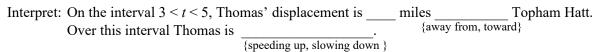

Thomas Takes a Trip


t	d(t)
0	10
1	12
2	10
3	6
4	2
5	0
6	2
7	10




- Consider the net signed area under the dashed velocity curve d'(t). Report to the nearest integer.



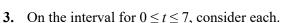
d. Report
$$\int_5^7 d'(t)dt =$$
 _____ miles

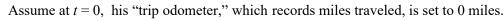
Interpret: On the interval
$$5 < t < 7$$
, Thomas' displacement is ____ miles ___ Topham Hatt. Over this interval Thomas is ____ {speeding up, slowing down }

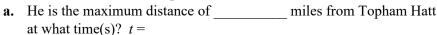
e. Report
$$\int_0^7 d'(t)dt =$$
 _____ miles

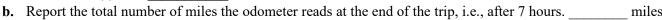
Consider the area under the dashed speed curve |d'(t)|. Report to the nearest integer.

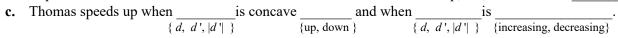
a. Report
$$\int_{0}^{1} |d'(t)| dt =$$
_____ miles

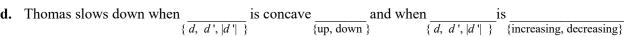

Interpret: On the interval 0 < t < 7,

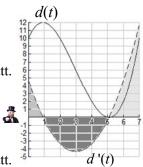

a. Report
$$\int_{0}^{1} |d'(t)| dt =$$
_____ miles **b.** Report $\int_{1}^{3} |d'(t)| dt =$ ____ miles

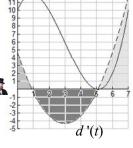

c. Report
$$\int_{3}^{5} |d'(t)| dt = _____ miles d. Report $\int_{5}^{7} |d'(t)| dt = _____ miles$$$

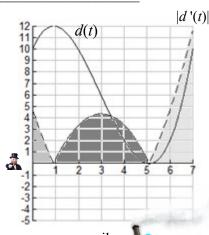

d. Report
$$\int_{5}^{7} |d'(t)| dt =$$
 _____ miles


e. Report
$$\int_0^7 |d'(t)| dt =$$
 _____ miles









Thomas the Tank Engine is d = f(t) miles from his boss Sir Topham Hatt, where t is given in hours. The graph of d = f(t) is shown for $0 \le t \le$

The derivative, d'(t) is Thomas' instantaneous velocity v(t) at time t. Recall d'(t) also gives Thomas' trajectory of movement. See his trip at users.pfw.edu/lamaster/ma165/ThomasTrip.htm Turn this completed sheet in at the beginning of class on Tuesday, August 22 for one Rhino bonus participation point.

