The Radius of Convergence

Suppose we extended series to complex numbers.

1. Consider the series $f(z)=\sum_{n=0}^{\infty} 10 z^{n}=10+10 z+10 z^{2}+10 z^{3}+10 z^{4}+10 z^{5}+10 z^{6}+10 z^{7}+10 z^{8}+\ldots$
a. If $z=1$, the series for $f(z) \xlongequal[\{\text { converges, does not exist, approaches }-\infty \text {, approaches } \infty\}]{ }$. Explain.
b. If $z=-1$, the series for $f(z)$ \qquad . Explain.
\{converges, does not exist, approaches $-\infty$, approaches ∞ \}
c. If $z=i$, the series for $f(z)$ \qquad . Explain.
d. If $z=-i$, the series for $f(z)$ \qquad . Explain.
e. If $z=\frac{1}{2} i$, the series for $f(z)$

f. Use the ratio test to determine the interval of convergence.
g. Sketch the graph of the points inside the interval of convergence on the complex plane.
h. Report the radius of convergence. $R=$ \qquad

i. Why do they call it the radius of convergence?
j. What kind of series is $f(z)=\sum_{n=0}^{\infty} 10 z^{n}=10+10 z+10 z^{2}+10 z^{3}+10 z^{4}+10 z^{5}+10 z^{6}+10 z^{7}+10 z^{8}+\ldots$?
k. On its interval of convergence, the infinite series for $f(z)$ is equivalent to the rational function $f(z)=$
2. Confirm this with your calculator in complex mode for $f\left(\frac{i}{2}\right)$.
3. Consider the series $f(z)=\sum_{n=1}^{\infty} n!z^{n}=1!z+2!z^{2}+3!z^{3}+4!z^{4}+5!z^{5}+6!z^{6}+7!z^{7}+8!z^{8}+\ldots$
a. Use the ratio test to determine the interval of convergence.
b. Sketch the graph of the points inside the interval of convergence on the complex plane.

c. Report the radius of convergence. $R=$
