The Radius of Convergence

Suppose we extended series to complex numbers.

1.			$0z^{n} = 10 + 10z + 10z^{2} + 10z^{3} + 10z^{4} + 10z^{4}$ onverges, does not exist, approaches $-\infty$, approaches ∞ }.	
	b.	If $z = -1$, the series for $f(z)$	$-$ {converges, does not exist, approaches $-\infty$, approaches ∞ }	Explain.
	c.	If $z = i$, the series for $f(z)$ _	{converges, does not exist, approaches $-\infty$, approaches ∞ }	Explain.
	d.	If $z = -i$, the series for $f(z)$	{converges, does not exist, approaches $-\infty$, approaches ∞	. Explain. }
	e.	If $z = \frac{1}{2}i$, the series for $f(z)$	{converges, does not exist, approaches $-\infty$, approaches ∞	. Explain.

f. Use the ratio test to determine the interval of convergence.

h. Report the **radius** of convergence. R = _____

-2 -1 1 2 -2 -1 -i -2 -2 -i

- i. Why do they call it the radius of convergence?
- j. What kind of series is $f(z) = \sum_{n=0}^{\infty} 10z^n = 10 + 10z + 10z^2 + 10z^3 + 10z^4 + 10z^5 + 10z^6 + 10z^7 + 10z^8 + \dots$?
- **k.** On its interval of convergence, the infinite series for f(z) is equivalent to the rational function f(z) =
- **I.** Confirm this with your calculator in complex mode for $f(\frac{i}{2})$.

- 2. Consider the series $f(z) = \sum_{n=1}^{\infty} n! z^n = 1! z + 2! z^2 + 3! z^3 + 4! z^4 + 5! z^5 + 6! z^6 + 7! z^7 + 8! z^8 + ...$
 - a. Use the ratio test to determine the interval of convergence.

b. Sketch the graph of the points inside the interval of convergence on the complex plane.

c. Report the **radius** of convergence. R =_____