Name_____Circle one: 9 10 Table: ____ Group: ___

The Formula for the Velocity

Turn in the following by the beginning of the class Thursday, Aug. 25 to receive +2 Rhino bonus participation points. Thomas the Tank Engine is d = f(t) miles from his boss Sir Topham Hatt III, where *t* is given in hours. The graph of d = f(t) is shown for $0 \le t \le 7$. See his trip animated at <u>users.pfw.edu/lamaster/ma165/ThomasTrip.htm</u>

You may assume only the following

d'(t) is quadratic with axis of symmetry at t = 3. Note: $d'(1) \neq 0$ and $d'(5) \neq 0$. Below is a table of values for d(t).

_	
t	d(t)
0	10
1	12
2	10
3	6
4	2
5	0
6	2
7	10

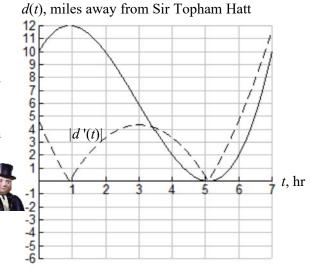
d(t), miles away from Sir Topham Hatt

1. Find a formula for d(t) using the FTC. Show work for credit.

We have $\int_0^t d'(x) dx = d(t) - d(0)$ so, by subtraction,

$$d(t) = \int_0^t d'(x) dx + d(0)$$
, where $d'(x) = a(x-3)^2 + k$ for some constants a and k.

Report exact values of the coefficients. Check your answer with a grapher. Your formula need **not** be in expanded form.


d(*t*) = _____

- 2. Thomas reaches a maximum speed on 1 < t < 5 at t = 3 hours.
 - a. Report the exact value, in miles per hour, of that maximum speed.

_ mph

b. Report, approximate to 0.001 hours, the two other times at which he reaches that maximum speed in part 2a on 0 < t < 7. You can solve graphically. No work needs to be shown.
t = _____ hrs, _____ hrs Report to three decimal places.

TIP: For help with the TI-84 Plus CE, go to Brightspace and see the module Student Support > TI-84 Plus Family Graphing Calculator Support

