Thanks, Slick Lenny, for the Result $\sum_{k=1}^{\infty} \frac{1}{k^{2}} \frac{\pi^{2}}{6}$
Name
(+3 Rhino Participation Bonus)

1. The functions $y=\sin x$ and $y=\frac{\sin x}{x}$ share infinitely many zeros. List those they share shown in the graph.
$x= \pm$ \square

2. Write the first six terms of the Taylor polynomial for sine. Use factorial notation please.

3. Something cool happens next.

4. Lenny used what you wrote in \#1 to write the infinite degree polynomial in \#3 in factored form as a product.

Complete the boxes with positive real numbers. Combine each of the pairs of factors of the same color.
Use $(A-B)(A+B)=A^{2}-B^{2}$.

$$
\begin{aligned}
& \frac{\sin x}{x}=\left(1-\frac{x}{\square}\right)\left(1+\frac{x}{\square}\right)\left(1-\frac{x}{\square}\right)\left(1+\frac{x}{\square}\right)\left(1-\frac{x}{\square}\right)\left(1+\frac{x}{\square}\right) \ldots \\
& =\left(1-\frac{x^{2}}{\square}\right)\left(1-\square-\square x^{2}\right)\binom{\square}{\square} \cdots
\end{aligned}
$$

Slick trick!
5. Lenny expanded the infinite product you reported in \#4 and collected like terms to compare it with \#3. TIP: Notice the pattern of the coefficients of the x^{2} terms for several partial products of this form.

$$
\begin{aligned}
&\left(1-A^{2} x^{2}\right)\left(1-B^{2} x^{2}\right)=1-\left(A^{2}+B^{2}\right) x^{2}+\left.\left(A^{2} B^{2}\right) x^{4}\right) \\
&\left(1-A^{2} x^{2}\right)\left(1-B^{2} x^{2}\right)\left(1-C^{2} x^{2}\right)=1-\left(A^{2}+B^{2}+C^{2}\right) x^{2}+\left(A^{2} B^{2}+A^{2} C^{2}+B^{2} C^{2}\right) x^{4}-\left(A^{2} B^{2} C^{2}\right) x^{6} . \\
&\left(1-A^{2} x^{2}\right)\left(1-B^{2} x^{2}\right)\left(1-C^{2} x^{2}\right)\left(1-D^{2} x^{2}\right)=1-\left(A^{2}+B^{2}+C^{2}+D^{2}\right) x^{2} \\
&+\left(A^{2} B^{2}+A^{2} C^{2}+A^{2} D^{2}+B^{2} C^{2}+B^{2} D^{2}+C^{2} D^{2}\right) x^{4} \\
&-\left(A^{2} B^{2} C^{2}+A^{2} B^{2} D^{2}+A^{2} C^{2} D^{2}+B^{2} C^{2} D^{2}\right) x^{6} \\
&+\left(A^{2} B^{2} C^{2} D^{2}\right) x^{8} .
\end{aligned}
$$

For the infinite product in $\# 4, \frac{\sin x}{x}=\left(1-A^{2} x^{2}\right)\left(1-B^{2} x^{2}\right)\left(1-C^{2} x^{2}\right)\left(1-D^{2} x^{2}\right) \cdots$, we would have $A=\square, B=\square, C=\square, D=\square$, etc.
6. Lenny noticed some golden treasure with the coefficient of the \boldsymbol{x}^{2} term of the expanded form of $\frac{\sin x}{x}$. \square Report it in the box below. (It involves π and k.)

Question 6 to what is in the dashed box in Question 3.
7. Follow Lenny's tip to show the result below. Equate the coefficients of the x^{2} terms and solve. $\overline{\boldsymbol{T}}$

Pi Is Good.

More Pi Is Better.

8. It has been convenient to use the capital Greek letter Sigma (equivalent to our letter S) for a sum.

Write the expanded form of $\frac{\sin x}{x}$ using Sigma notation.

$$
\frac{\sin x}{x}=\frac{x^{0}}{1!}-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\frac{x^{8}}{9!}-\frac{x^{10}}{11!}+\ldots .=\sum_{k=\square}^{\infty} \square
$$

9. It is also convenient use the capital Greek letter Pi (equivalent to our letter P) for a product.

Write the factored form of $\frac{\sin x}{x}$ using Pi notation.

$$
\frac{\sin x}{x}=\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{4 \pi^{2}}\right)\left(1-\frac{x^{2}}{9 \pi^{2}}\right)\left(1-\frac{x^{2}}{16 \pi^{2}}\right) \cdots=\square
$$

$k=$ \qquad
10. Recall how, in \#5, we saw the expanded form of these partial products.

$$
\begin{aligned}
&\left(1-A^{2} x^{2}\right)\left(1-B^{2} x^{2}\right)=1-\left(A^{2}+B^{2}\right) x^{2}+\left(A^{2} \boldsymbol{B}^{2}\right) x^{4} . \\
&\left(1-A^{2} x^{2}\right)\left(1-B^{2} x^{2}\right)\left(1-C^{2} x^{2}\right)=1-\left(A^{2}+\boldsymbol{B}^{2}+C^{2}\right) x^{2}+\left(A^{2} B^{2}+A^{2} C^{2}+B^{2} C^{2}\right) x^{4}-\left(\boldsymbol{A}^{2} \boldsymbol{B}^{2} C^{2}\right) x^{6} . \\
&\left(1-A^{2} x^{2}\right)\left(1-B^{2} x^{2}\right)\left(1-C^{2} x^{2}\right)\left(1-D^{2} x^{2}\right)=1-\left(A^{2}+\boldsymbol{B}^{2}+C^{2}+D^{2}\right) x^{2} \\
&+\left(A^{2} B^{2}+A^{2} C^{2}+A^{2} D^{2}+B^{2} C^{2}+B^{2} D^{2}+C^{2} D^{2}\right) x^{4} . \\
&-\left(A^{2} B^{2} C^{2}+A^{2} B^{2} D^{2}+A^{2} C^{2} D^{2}+B^{2} C^{2} D^{2}\right) x^{6}+\left(\boldsymbol{A}^{2} \boldsymbol{B}^{2} \boldsymbol{C}^{2} \boldsymbol{D}^{2}\right) x^{8} . \\
&\left(1-A^{2} x^{2}\right)\left(1-B^{2} x^{2}\right)\left(1-C^{2} x^{2}\right)\left(1-D^{2} x^{2}\right)\left(1-E^{2} x^{2}\right)=1-\left(A^{2}+\boldsymbol{B}^{2}+C^{2}+D^{2}+E^{2}\right) x^{2}+\ldots+\left(\boldsymbol{A}^{2} \boldsymbol{B}^{2} \boldsymbol{C}^{2} D^{2} E^{2}\right) x^{10} .
\end{aligned}
$$

In $\# 5$ we found the values of A, B, C, and D for which $\frac{\sin x}{x}=\left(1-A^{2} x^{2}\right)\left(1-B^{2} x^{2}\right)\left(1-C^{2} x^{2}\right)\left(1-D^{2} x^{2}\right) \cdots$ Complete the boxes for the nth partial product.

$$
\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{4 \pi^{2}}\right)\left(1-\frac{x^{2}}{9 \pi^{2}}\right)\left(1-\frac{x^{2}}{16 \pi^{2}}\right) \cdots\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right)=1-\sum_{k=\square}^{\square}+\ldots+\prod_{k=\square}^{\square}
$$

