Richie Rich Breaks the Bank

Once per year Richie Rich deposits an amount of $\$ 800$ in an account which pays 15% interest per year, compounded annually, with additional deposits of $\$ 800$ continually made at the end of the year.

If B_{n} is the balance in the account, in dollars, immediately after Richie makes the nth deposit, then we can write $B_{1}=\$ 800$.
(a) Complete the table to find the following. Report to the nearest $\$ 0.01$.
i) the balance, B_{2}, of the account on the day immediately after the second deposit.
ii) the balance, B_{3}, of the account on the day immediately after the third deposit.
iii) the balance, B_{4}, of the account on the day immediately after the fourth deposit.

n (Number of deposits)	$B_{n}(\$)$
1	$\$ 800$
2	$\$$
3	$\$$
4	$\$$

(b) Suppose Richie makes 36 deposits.

What is the balance of the account on the day immediately after the 36th deposit? (Select one)
A. $B_{36}=\$ 122,521.48$
B. $B_{36}=\$ 121,721.48$
C. $B_{36}=\$ 704,936.12$ D. $B_{36}=\$ 811,476.54$ E. $B_{36}=\$ 933,998.03$
(c) Suppose Richie makes 436 deposits. Which is true about the sum B_{436} ?
i) The balance, B_{436}, of the account on the day immediately after the 436th deposit is

A $\quad B_{436}=800 \cdot 15^{437}+800 \cdot 15^{436}+\ldots+800 \cdot 15^{2}+800 \cdot 15+800$
B $\quad B_{436}=800 \cdot 1.15^{437}+800 \cdot 1.15^{436}+\ldots+800 \cdot 1.15^{2}+800 \cdot 1.15+800$
C $B_{436}=800 \cdot 1.15^{436}+800 \cdot 1.15^{435}+\ldots+800 \cdot 1.15^{2}+800 \cdot 1.15+800$
D $B_{436}=800 \cdot 15^{435}+800 \cdot 15^{434}+\ldots+800 \cdot 15^{2}+800 \cdot 15+800$
E $\quad B_{436}=800 \cdot 1.15^{435}+800 \cdot 1.15^{434}+\ldots+800 \cdot 1.15^{2}+800 \cdot 1.15+800$
F $\quad B_{436}=800 \cdot 15^{436}+800 \cdot 15^{435}+\ldots+800 \cdot 15^{2}+800 \cdot 15+800$
G None of these.
ii) The balance, B_{436}, of the account on the day immediately after the 436th deposit is approximately

A $\quad B_{436}=\$ 1572474166441745500000000000000$

B $\quad B_{436}=\$ 19167800555041925000000000000$
C $\quad B_{436}=\$ 1553306365886703700000000000000$

D $\quad B_{436}=\$ 1350701187727568500000000000000$

E $\quad B_{436}=\$ 1786302320769709200000000000000$

F The value of B_{436} can not be computed

Rhino Bonus Opportunity

In August, 2022, the Powerball jackpot had reached $\$ 206.9$ million when a single winning ticket was sold in Pennsylvania. The winner had two options ${ }^{1}$.
A. A lump sum payment of $\$ 122.3$ million.
B. An annuity which offers an initial payment followed by 29 annual payments.

Each payment is 5 percent larger than the previous one.
Option B would have given the winner the full $\$ 206.9$ million reward, paid out over three decades.

Assume the winner chooses Option B. Answer the following. Be sure to show your work for credit.
$(+0.5)$ i. What is the amount of the initial payment? Report to the nearest penny, i.e. to $\$ 0.01$ dollars. $(+0.5)$ ii. What is the amount of the last (29th) payment? Report to the nearest penny, i.e. to $\$ 0.01$ dollars.
${ }^{1}$ The advantages of each option are compared at https://www.annuity.org/selling-payments/lottery/

