## **Richie Rich Breaks the Bank**

Once per year Richie Rich deposits an amount of \$800 in an account which pays 15% interest per year, compounded annually, with <u>additional deposits of \$800 continually made at the end of the year</u>.

If  $B_n$  is the balance in the account, in dollars, immediately after Richie makes the *n*th deposit, then we can write  $B_1 = \$800$ .

(a) Complete the table to find the following. Report to the nearest \$0.01.

i) the balance,  $B_2$ , of the account on the day immediately after the second deposit.

ii) the balance,  $B_3$ , of the account on the day immediately after the third deposit.

iii) the balance,  $B_4$ , of the account on the day immediately after the fourth deposit.

| <i>n</i> (Number of deposits) | $B_n$ (\$)                 |
|-------------------------------|----------------------------|
| 1                             | \$800                      |
| 2                             | \$(It is more than \$920.) |
| 3                             | \$                         |
| 4                             | \$                         |



(b) Suppose Richie makes 36 deposits.

What is the balance of the account on the day immediately after the 36th deposit? (Select one) A.  $B_{36} = $122,521.48$  B.  $B_{36} = $121,721.48$  C.  $B_{36} = $704,936.12$  D.  $B_{36} = $811,476.54$  E.  $B_{36} = $933,998.03$ 

(c) Suppose Richie makes 436 deposits. Which is true about the sum  $B_{436}$ ?

i) The balance,  $B_{436}$ , of the account on the day immediately after the 436th deposit is

- **A**  $B_{436} = 800 \cdot 15^{437} + 800 \cdot 15^{436} + ... + 800 \cdot 15^2 + 800 \cdot 15 + 800$
- **B**  $B_{436} = 800 \cdot 1.15^{437} + 800 \cdot 1.15^{436} + ... + 800 \cdot 1.15^2 + 800 \cdot 1.15 + 800$
- **C**  $B_{436} = 800 \cdot 1.15^{436} + 800 \cdot 1.15^{435} + \dots + 800 \cdot 1.15^2 + 800 \cdot 1.15 + 800$
- **D**  $B_{436} = 800 \cdot 15^{435} + 800 \cdot 15^{434} + ... + 800 \cdot 15^2 + 800 \cdot 15 + 800$
- **E**  $B_{436} = 800 \cdot 1.15^{435} + 800 \cdot 1.15^{434} + ... + 800 \cdot 1.15^2 + 800 \cdot 1.15 + 800$
- **F**  $B_{436} = 800 \cdot 15^{436} + 800 \cdot 15^{435} + ... + 800 \cdot 15^2 + 800 \cdot 15 + 800$
- **G** None of these.

ii) The balance,  $B_{436}$ , of the account on the day immediately after the 436th deposit is approximately

- **F** The value of  $B_{436}$  can not be computed.



## **Rhino Bonus Opportunity**

In August, 2022, the Powerball jackpot had reached \$206.9 million when a single winning ticket was sold in Pennsylvania. The winner had two options<sup>1</sup>.

- A. A lump sum payment of \$122.3 million.
- B. An annuity which offers an initial payment followed by 29 annual payments.
  Each payment is 5 percent larger than the previous one.
  Option B would have given the winner the full \$206.9 million reward, paid out over three decades.

Assume the winner chooses Option B. Answer the following. Be sure to **show your work** for credit.

(+0.5) i. What is the amount of the initial payment? Report to the nearest penny, i.e. to \$0.01 dollars.

(+0.5) ii. What is the amount of the last (29th) payment? Report to the nearest penny, i.e. to \$0.01 dollars.

<sup>1</sup>The advantages of each option are compared at <u>https://www.annuity.org/selling-payments/lottery/</u>