Rhino Bonus: The Sum of $\sum_{k=1}^{\infty} a_{k}=\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ and the Sum of $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2}}$

In 1735 , Euler showed this amazing fact: $\sum_{k=1}^{\infty} a_{k}=\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\cdots=\frac{\pi^{2}}{6}$.
Above is a plot of the terms, $\left(n, a_{n}\right)$, along with the plot of the nth partial sums $\left(n, S_{n}\right)$.
-1
(+1) Use Euler's result that $\sum_{k=1}^{\infty} a_{k}=\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\cdots=\frac{\pi^{2}}{6}$ to determine the exact value of the alternating series $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2}}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}-\frac{1}{6^{2}}+\cdots$
Below is a plot of the terms, $\left(n, a_{n}\right)$, along with the plot of the nth partial sums $\left(n, S_{n}\right)$ for the

To check your answer, you can produce the above graphs of the partial sums on your calculator.
-1 Hint: the values of $\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\frac{1}{8^{2}}+\cdots$ and $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots$ might be helpful.
Show work clearly on the back for credit, working with
$\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}-\frac{1}{6^{2}}+\frac{1}{7^{2}}-\frac{1}{8^{2}}+\cdots$ in its expanded form (also called long form).

