MA 16600 Practice Questions over 8.3 and Appendix C

- 1. State the double-angle identity used to integrate $\sin^2 x$.
- 2. State the double-angle identity used to integrate $\cos^2 x$.
- **3.** Find the indefinite integral. Show work. $\int \sin^3 x \, dx$
- 4. Find the indefinite integrals. Show work.
 - **a.** $\int \tan^9 x \sec^2 x dx$

b. $\int \cos^2 \theta d\theta$

c. $\int \sin^3 x \cos^6 x dx$

5. Consider the integral $\int \frac{\sin \theta}{\cos^2 \theta} d\theta$. Which of the following A. $\sin \theta + C$ B. $\cos \theta + C$ C. $\tan \theta + C$ D. $\csc \theta + C$ E. $\sec \theta + C$ F. $\cot \theta + C$ G. $-\sin \theta + C$ H. $-\cos \theta + C$ I. $-\tan \theta + C$ J. $-\csc \theta + C$ K. $-\sec \theta + C$ L. $-\cot \theta + C$ M. All of these N. None of these.

6. Consider $\int \sec^{14} x \tan^{17} x \, dx$

a. Suppose we let $u = \tan x$. Then $du = \underline{dx}$ Then we can write $\int \sec^{14} x \tan^{17} x \, dx = \int du$.

Your answer is a binomial in terms of u raised to a power multiplied by u raised to a power. Do not multiply it out. Do not find the antiderivative. Just leave it as a polynomial.

b. Suppose we let $w = \sec x$. Then $dw = \underline{dx}$ Then we can write $\int \sec^{14} x \tan^{17} x \, dx = \int dw$.

Your answer is a binomial in terms of *w* raised to a power multiplied by *w* raised to a power. Do not multiply it out. Do not find the antiderivative. Just leave it as a polynomial.

7. a. Use your calculator to compute $z = \frac{5-i}{5+i}$ and report in the form z = x + yi, where x and y are **exact** real numbers

Then find the absolute value of z.

$$z = \frac{5-i}{5+i} = \boxed{ + \boxed{ i}}$$

- **b.** $|z| = \left| \frac{5-i}{5+i} \right| =$ (Use your calculator's absolute value command.)
- **c.** Determine the location of z on the complex plane. Assume a square grid. (Select one)

d. Write the complex number z in polar form rcis θ , where r is an exact real number. Approximate θ in degrees to 1 decimal place.

 $z_1 = 5 - 5i$

 $z_4 = 5 \operatorname{cis} 7 \pi$

 $z_3 = 3\sqrt{2} \operatorname{cis} \frac{3\pi}{4}$

 $z_2 = -3i$

8. a. Plot and label the complex numbers on the grid shown.

b. Write z_1 and z_2 in polar form rcis θ , where r and θ

(There are many correct answers for θ ; however,

report exact radians please.)

Washington Irving Stringham

For θ please choose from 0, $\pi/6$, $\pi/4$, $\pi/3$, $\pi/2$, $2\pi/3$, $3\pi/4$, $5\pi/6$, π , $7\pi/6$, $5\pi/4$, $4\pi/3$, $3\pi/2$, $5\pi/3$, $7\pi/4$, or $11\pi/6$

cis

- $z_1 = 5 5i$ *r* = _____ $\theta =$ Polar form $r \operatorname{cis} \theta$ of $z_1 = 5 - 5i =$ cis $z_2 = -4i$ *r* = _____ $\theta =$ Polar form $r \operatorname{cis} \theta$ of $z_2 = -4i =$
- Write z_3 and z_4 in rectangular form x + yi, c. where x and y are **exact** real numbers.

$$z_{3} = 3\sqrt{2} \operatorname{cis} \frac{3\pi}{4} = \boxed{ + \boxed{ + \boxed{ + i }} + \boxed{ + i }$$

- 9. Consider the complex number i^{37027}
 - **a.** A student uses a calculator to try to write the number in rectangular form x + yi, where x and yare real numbers. See the screen shown.

What should the exact answer really be? Report the exact answer in rectangular form x + yi:

$$i^{37027} =$$
 + i

b. Report the location of i^{37027} in the complex plane. Plot the point. A. the positive real axis D. the negative imaginary axis E. none of these

c. Use part **b** to report i^{37027} in polar form in polar form $r \operatorname{cis} \theta$, where r and θ are exact real numbers (and θ is in radians). Hint: Part (b) may help. (There are many correct answers for θ ; however for θ please choose from 0, $\pi/6$, $\pi/4$, $\pi/3$, $\pi/2$, $2\pi/3$, $3\pi/4$, $5\pi/6$, π , $7\pi/6$, $5\pi/4$, $4\pi/3$, $3\pi/2$, $5\pi/3$, $7\pi/4$, or $11\pi/6$)

Polar form
$$r \operatorname{cis} \theta$$
 of $i^{37027} =$ cis

10. Consider the complex geometric series $f(z) = \sum_{k=0}^{\infty} 50z^k = 50 + 50z + 50z^2 + 50z^3 + \dots$ which converges

on
$$|z| < 1$$
. Report the value of $f\left(\frac{3i}{4}\right) = \sum_{k=0}^{\infty} 50\left(\frac{3i}{4}\right)^k$.

a. We separate even powers of $\frac{3i}{4}$ and odd powers of $\frac{3i}{4}$.

$$f\left(\frac{3i}{4}\right) = \sum_{k=0}^{\infty} 50\left(\frac{3i}{4}\right)^{k} = 50\left(1 + \left(\frac{3i}{4}\right)^{2} + \left(\frac{3i}{4}\right)^{4} + \left(\frac{3i}{4}\right)^{6} + \dots\right) + 50\left(\left(\frac{3i}{4}\right)^{1} + \left(\frac{3i}{4}\right)^{3} + \left(\frac{3i}{4}\right)^{5} + \left(\frac{3i}{4}\right)^{7} + \dots\right)$$

First simplify powers of i. Then combine real parts in the first row and imaginary parts in the second row.

Then factor out 50 in the first row and $50 \cdot \frac{3i}{4}$ in the second row. Enter **real** numbers in each box.

You can write the real numbers as powers of $\frac{3}{4}$.

A. The sum converges to the complex number $f(i) = ___+__i$ (Insert real numbers in the blanks.) B. The sum diverges to ∞

2.377E-10-i

C. The sum diverges to $-\infty$. D. The limit of the partial sums does not exist.