Practice Questions Over Sections 8.2-8.4

1. Integrate by parts. Show work. $\int x \sin 5 x d x=\square+C$

$$
\begin{aligned}
& u=\square d v=\square d x \\
& d u=\square \quad d x \quad v=\square
\end{aligned}
$$

2. Integrate by parts. Show work. $\int x e^{-x} d x=\square+C$

$$
\begin{aligned}
& u=_d v=\square d x \\
& d u=\square \quad d x \quad v=\square
\end{aligned}
$$

3. Integrate by parts. Show work. $\int x \ln x d x=\square+C$

$$
\begin{aligned}
& u=_d v=\square d x \\
& d u=\square \quad d x \quad v=\square
\end{aligned}
$$

4. Find the indefinite integrals. Show work.
a. $\int \tan ^{9} x \sec ^{2} x d x=$ \qquad $+C$
b. $\quad \int \frac{\sec \theta}{\tan ^{2} \theta} d \theta=$ \qquad $+C$
c. $\quad \int \cos ^{2} \theta d \theta=$ \qquad $+C$
d. $\quad \int \sin ^{3} x \cos ^{6} x d x=$ \qquad $+C$
5. Consider the integral $\int \frac{\sin \theta}{\cos ^{2} \theta} d \theta$.
a. Select which of these is the antiderivative for the integral $\int \frac{\sin \theta}{\cos ^{2} \theta} d \theta$.
A. $\sin \theta+\mathrm{C}$
B. $\cos \theta+\mathrm{C}$
C. $\tan \theta+\mathrm{C}$
D. $\csc \theta+\mathrm{C}$
E. $\sec \theta+\mathrm{C}$
F. $\cot \theta+\mathrm{C}$
G. $-\sin \theta+\mathrm{C}$
H. $-\cos \theta+\mathrm{C}$
I. $-\tan \theta+\mathrm{C}$
J. $-\csc \theta+\mathrm{C}$
K. $-\sec \theta+\mathrm{C}$
L. $-\cot \theta+\mathrm{C}$
M. All of these.
N . None of these.
b. Explain your reasoning for your selection.
6. Consider $\int \sec ^{14} x \tan ^{17} x d x$
(2)
a. Suppose we let $u=\tan x$. Then $d u=$ \qquad
Then we can write $\int \sec ^{14} x \tan ^{17} x d x=\int$ \square
Your answer is a binomial in terms of u raised to a power multiplied by u raised to a power. Do not multiply it out. Do not find the antiderivative. Just leave it as a polynomial.
b. Suppose we let $w=\sec x$. Then $d w=$ \qquad
Then we can write $\int \sec ^{14} x \tan ^{17} x d x=\int \square d w$.
Your answer is a binomial in terms of w raised to a power multiplied by w raised to a power. Do not multiply it out. Do not find the antiderivative. Just leave it as a polynomial.

The quiz will contain a bonus question on trig substitution. Here are some for practice.
7. Integrate $\int \frac{25}{x^{2} \sqrt{x^{2}-25}} d x, x>5$ using trig substitution.
a. Complete: $x=5 \sec \theta d x=$ \qquad $d \theta, \sqrt{x^{2}-25}=$ \qquad
b. Write entirely in terms of θ. Simplify your answer in the boxes as much as possible. Show work.

$$
\int \frac{25}{x^{2} \sqrt{x^{2}-25}} d x=\square+C
$$

8. Integrate $\int \frac{x}{\sqrt{16-x^{2}}} d x$ using trig substitution.
a. Complete: $x=4 \sin \theta \quad d x=$ \qquad $d \theta, \sqrt{16-x^{2}}=$ \qquad .
b. Write entirely in terms of θ. Simplify your answer in the boxes as much as possible.

c. Write entirely in terms of x. Label the right triangle and use it to help you. Show work.

9. Integrate $\int \frac{x^{2} d x}{\left(x^{2}+36\right)^{3 / 2}}$ using trig substitution.
a. Complete: $x=6 \tan \theta \quad d x=$ \qquad $d \theta, \sqrt{x^{2}+36}=$ \qquad .
b. Write entirely in terms of θ. Simplify your answer in the boxes as much as possible.

c. Write entirely in terms of x. Label the right triangle and use it to help you. Show work.

$$
\int \frac{x^{2} d x}{\left(x^{2}+36\right)^{3 / 2}}=\square+C
$$

