Practice Questions Over Sections 8.2-8.4

1. Integrate by parts. Show work. $\int x \sin 5x \, dx =$

 $u = \underline{\qquad} dv = \underline{\qquad} dx$

 $du = \underline{\qquad} dx \quad v = \underline{\qquad}$

 $du = \underline{\qquad} dx \quad v = \underline{\qquad}$

3. Integrate by parts. Show work. $\int x \ln x \, dx =$ + C

 $u = \underline{\qquad} dv = \underline{\qquad} dx$

 $du = \underline{\qquad} dx \quad v = \underline{\qquad}$

4. Find the indefinite integrals. Show work.

a.
$$\int \tan^9 x \sec^2 x \, dx =$$
______ + C

b.
$$\int \frac{\sec \theta}{\tan^2 \theta} d\theta = \underline{\hspace{1cm}} + C$$

$$\mathbf{c.} \qquad \int \cos^2 \theta \, d\theta = \underline{\qquad} + C$$

$$\mathbf{d.} \qquad \int \sin^3 x \cos^6 x \, dx = \underline{\qquad} + C$$

- 5. Consider the integral $\int \frac{\sin \theta}{\cos^2 \theta} d\theta$.
 - a. Select which of these is the antiderivative for the integral $\int \frac{\sin \theta}{\cos^2 \theta} d\theta$.

A.
$$\sin \theta + C$$

G. $-\sin \theta + C$

B.
$$\cos \theta + C$$

C.
$$\tan \theta + C$$

$$\int . \csc \theta + C$$

E.
$$\sec \theta + C$$

F.
$$\cot \theta + C$$

H.
$$-\cos \theta + C$$
 I. $-\tan \theta + C$

J.
$$-\csc\theta + 0$$

K.
$$-\sec \theta + C$$

D.
$$\csc \theta + C$$
 E. $\sec \theta + C$ F. $\cot \theta + C$
J. $-\csc \theta + C$ K. $-\sec \theta + C$ L. $-\cot \theta + C$

b. Explain your reasoning for your selection.

- **6.** Consider $\int \sec^{14} x \tan^{17} x dx$
- **a.** Suppose we let $u = \tan x$. Then du =(2) Then we can write $\int \sec^{14} x \tan^{17} x \, dx = \int$ du.

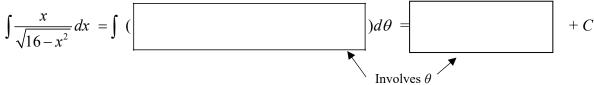
Your answer is a binomial in terms of u raised to a power multiplied by u raised to a power. Do not multiply it out. Do not find the antiderivative. Just leave it as a polynomial.

b. Suppose we let $w = \sec x$. Then dw =(2) Then we can write $\int \sec^{14} x \tan^{17} x \, dx = \int$ dw.

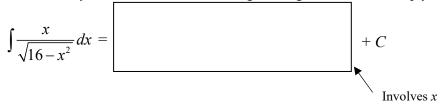
> Your answer is a binomial in terms of w raised to a power multiplied by w raised to a power. Do not multiply it out. Do not find the antiderivative. Just leave it as a polynomial.

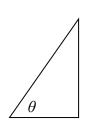
The quiz will contain a bonus question on trig substitution. Here are some for practice.

- 7. Integrate $\int \frac{25}{x^2 \sqrt{x^2 25}} dx$, x > 5 using trig substitution.
 - **a.** Complete: $x = 5\sec \theta \ dx =$ ______ $d\theta$, $\sqrt{x^2 25} =$ _____.
 - **b.** Write entirely in terms of θ . Simplify your answer in the boxes as much as possible. Show work.


Write entirely in terms of
$$\theta$$
. Simplify your answer in the boxes as much as possible. Show work.
$$\int \frac{25}{x^2 \sqrt{x^2 - 25}} dx = \int \left(\frac{1}{1 + C} \right) d\theta = \frac{1}{1 + C}$$
Involves θ

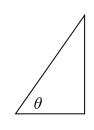
 θ


 \mathbf{c} . Write entirely in terms of x. Label the right triangle to help you. Show work.


$$\int \frac{25}{x^2 \sqrt{x^2 - 25}} dx =$$
Involves:

- **8.** Integrate $\int \frac{x}{\sqrt{16-x^2}} dx$ using trig substitution.
 - **a.** Complete: $x = 4\sin \theta \quad dx =$ ______ $d\theta$, $\sqrt{16 x^2} =$ ______.
 - **b.** Write entirely in terms of θ . Simplify your answer in the boxes as much as possible.

c. Write entirely in terms of x. Label the right triangle and use it to help you. Show work.



- 9. Integrate $\int \frac{x^2 dx}{(x^2 + 36)^{3/2}}$ using trig substitution.
 - **a.** Complete: $x = 6 \tan \theta$ $dx = _____ <math>d\theta$, $\sqrt{x^2 + 36} = _____.$
 - **b.** Write entirely in terms of θ . Simplify your answer in the boxes as much as possible.

$$\int \frac{x^2 dx}{(x^2 + 36)^{3/2}} = \int \left(\frac{1}{(x^2 + 36)^{3/2}} \right) d\theta = \frac{1}{(x^2 + 36)^{3/2}} + C$$
Involves θ

 \mathbf{c} . Write entirely in terms of x. Label the right triangle and use it to help you. Show work.

$$\int \frac{x^2 dx}{(x^2 + 36)^{3/2}} = \boxed{ + C}$$
Involves x

