1. Given the polar equation in terms of r and θ, write the Cartesian equation in terms of x and y. Your equation should begin with " $y=$ "
a. $r=\csc \theta$
b. $r=\frac{\tan \theta}{\cos \theta-\sin \theta}$
c. $r=\frac{1}{\cos \theta+\sin \theta}$
d. $r=\frac{2 \csc \theta}{\cot \theta+r \cos \theta}$
e. $r^{2} \cos \theta+r \tan \theta=\sec \theta$
f. $r^{2}=\sec ^{2} \theta \tan \theta$
2. Given the Cartesian equation in terms of x and y, write the polar equation in terms of r and θ.

Your equation should begin with " $r=$ "
a. $\quad x^{2}+y^{2}=x+y$
b. $x^{2}\left(x^{2}+y^{2}\right)=y^{2}$
c. $y=3-2 x$
3. Recall the area from $\theta=\alpha$ to $\theta=\beta$ inside a polar graph is $\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta$
a. Find the exact area of the region inside one leaf of the 5-leaved rose $r=5 \cos 5 \theta$

You can use the FNINT command, but provide an exact area.

b. Set up the integral to calculate the area of the region inside the inner loop of the limaçon $r=\sqrt{2}-2 \sin \theta$. Use the FNINT command to find the area and approximate it the area to two decimal places.
To find the integration limits, find where $r=\sqrt{2}-2 \sin \theta=0$
where $0 \leq \theta<2 \pi$, since this will be where the inner loop starts and ends.
TIP: The dashed lines in the above graph are the polar equations $\theta=\alpha$ and $\theta=\beta$, where α and β are the lower and upper limits of integration. You can enter these values in your polar grapher as $\theta_{\min }$ and $\theta_{\text {max }}$ to check that you have sketched only the inner loop.

c. The arc length from $\theta=0$ to $\theta=11$ of a polar spiral $r=6 \theta^{2}$ is given by $\int_{0}^{11} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$.

Calculate the arc Report the arc length correct to the nearest whole number.
You can use the FNINT command. Round to the nearest whole number.

Possible Bonus Questions on the Quiz Similar to These

4. Find the indefinite integrals. Show work.
a. $\int \tan ^{9} x \sec ^{2} x d x$
b. $\int \cos ^{2} \theta d \theta$
c. $\int \sin ^{3} x \cos ^{6} x d x$
5. Consider the integral $\int \frac{\sin \theta}{\cos ^{2} \theta} d \theta$. Which of the following
A. $\sin \theta+\mathrm{C}$
B. $\cos \theta+\mathrm{C}$
C. $\tan \theta+\mathrm{C}$
D. $\csc \theta+\mathrm{C} \quad$ E. $\sec \theta+\mathrm{C} \quad$ F. $\cot \theta+\mathrm{C}$
G. $-\sin \theta+\mathrm{C}$
H. $-\cos \theta+\mathrm{C}$
I. $-\tan \theta+\mathrm{C}$
J. $-\csc \theta+\mathrm{C}$ K. $-\sec \theta+\mathrm{C}$
L. $-\cot \theta+\mathrm{C}$
M. All of these N. None of these.
6. Consider $\int \sec ^{14} x \tan ^{17} x d x$
a. Suppose we let $u=\tan x$. Then $d u=$ \qquad $d x$
Then we can write $\int \sec ^{14} x \tan ^{17} x d x=\int \square d u$.
Your answer is a binomial in terms of u raised to a power multiplied by u raised to a power. Do not multiply it out. Do not find the antiderivative. Just leave it as a polynomial.
b. Suppose we let $w=\sec x$. Then $d w=$ \qquad
Then we can write $\int \sec ^{14} x \tan ^{17} x d x=\int \square d w$.
Your answer is a binomial in terms of w raised to a power multiplied by w raised to a power. Do not multiply it out. Do not find the antiderivative. Just leave it as a polynomial.
