Practice Questions from Section 10.5

- **1.** Complete the boxes and blanks. You can just circling the correct choices in the word bank.
	- **a**. **i.** To use the Direct Comparison Test to show the series $\sum_{n=1}^{n} c_n$ diverges,

we find a ______________ series $\sum d_n$ and must show that, for some large enough *n*, we have c_n _____ d_n . {convergent, divergent} $\{ \leq, \geq \}$

ii. Below is a plot of (n, c_n) and (n, d_n) . Insert in the box which is c_n and which is d_n .

b. i. To use the Direct Comparison Test to show the series $\sum_{n=1}^{\infty} c_n$ converges, we find a ______________ series $\sum d_n$ and must show that, for some large enough *n*, we have c_n _____ d_n .

$$
\frac{\text{series}}{\text{convergent, divergent}} \sum_{n=1}^{\infty} d_n
$$
 and must show that, for some large enough *n*, we have c_n

ii. Below is a plot of (n, c_n) and (n, d_n) . Insert in the box which is c_n and which is d_n .

c. i. Suppose Finn decides to use the Direct Comparison Test to investigate the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$. Complete the boxes. Finn chooses to compare $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ to the series $\sum_{n=1}^{\infty} 1$. He tells you, "Since $\ln n < n$, then $\frac{\ln n}{n} < \frac{n}{n} = 1$ " You respond: A. \bigcirc B. \bigcirc B. Finn goes on to say "We know that $\sum 1 = |$ because of the _______________________..." He concludes "Therefore by the Direct Comparison Test we know \sum $\frac{m}{n}$ diverges." You respond: A. $\bigcirc \bigcirc \bigcirc$ B. **ii.** What alternative Convergence Test(s) could Finn use to show \sum $\frac{1}{2}$ diverges? **d. i.** Suppose Gil decides to use the Direct Comparison Test to investigate the series $\sum_{n=1}^{\infty} \left(\frac{n}{n^3 - n + 1} \right)$. Complete the boxes. Gil compares $\sum_{n=1}^{\infty} \left(\frac{n}{n^3 - n + 1} \right)$ to the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^2} = \sqrt{\frac{n^3 - 1}{n^3}}$ (Give a reason for your answer such as harmonic series, p -series with $p > 1$, *p*-series with *p* < 1, geometric series, *n*th Term Test for Divergence, etc.) (*p*-series with $p > 1$, *p*-series with $p < 1$, geometric series, Integral Test, *n*th Term Test) This result brought me world fame. Select all possible answers.

Gil tells you, "Since $n^3 - n + 1 \le n^3$ for $n \ge 1$, then $\frac{1}{n^2} = \frac{n}{n^3} \le \frac{n}{n^3 - n + 1}$ " You say: A.

Gil concludes "Therefore by the Direct Comparison Test we know $\sum_{n=1}^{\infty} \left(\frac{n}{n^3 - n + 1} \right)$ converges."

You respond: A. \bigodot B. \bigodot

ii. What alternative Convergence Test(s) could Gil use to show $\sum \left| \frac{1}{n} \right|$ converges? Select all possible answers.

Select all possible answers.

Select all possible answers. ntegral Test, *n*th Term Test for Divergence

- **2.** Consider the series $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n}$ $n^{7/4}$ sin *n n n* ∞ $\sum_{n=1}^{\infty} \frac{\sin n}{n^{7/4}}$. Complete the boxes and blanks.
	- **a.** $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n}$ $n^{7/4}$ sin *n n n* ∞ $\sum_{n=1}^{\infty} \frac{\sin n}{n^{7/4}} \text{ will } \frac{1}{\sqrt{\text{converge diverge}}}$ {converge, diverge}
	- **b.** Complete the box: We can use the Direct Comparison Test with $\sum_{n=1}^{\infty} \parallel \parallel_{n=1}^{\infty}$ to validate our claim in part **a**.
	- **c.** Assuming the contents of the dashed box are same as the *n*th term of your series in part **b**, which choice is true?
		- Circle one and complete the box: **i.** $\frac{\sin^2 n}{n^{7/4}} \le \begin{array}{ccc} 1 & 1 & \cdots & \cdots & \cdots \\ \parallel & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{array}$ **ii.** $\begin{array}{ccc} 1 & \cdots & \cdots & \cdots & \cdots & \cdots \\ \parallel & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots &$
	- **d.** Complete, assuming the series in tbe dashed box below is what you wrote in the box in part **b**.

 \parallel will because \parallel {converge, diverge} (Give a reason for your answer such as harmonic series, *p*-series with *p* > 1, *p*-series with *p* < 1, geometric series, *n*th Term Test for Divergence)

3. Consider the series $\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n^2}$ 1 tan $\sum_{n=1}^{\infty}$ 3^{*n*} $\sum_{n=1}^{\infty}$ tan⁻¹ *n* $\sum_{n=1}^{\infty} \frac{\tan n}{3^n}$. Complete the boxes and blanks. **a.** $\sum_{n=1}^{\infty} \frac{\tan^{-1} x}{n}$ 1 tan $\sum_{n=1}^{\infty}$ 3^{*n*} $\sum_{n=1}^{\infty}$ tan⁻¹ *n* $\sum_{n=1}^{\infty} \frac{\tan n}{3^n}$ will $\frac{\sec n}{3^n}$ (converge, diverge)

b. Complete the box: We can use the Direct Comparison Test with \sum $\begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$ to validate our claim in part **a**.

c. Assuming the contents of the box are same as the *n*th term of your series in part **b**, which choice is true?

d. Complete, assuming the series in tbe box below is what you wrote in the box in part **b**.

4. Consider the series $\sum_{n=1}^{\infty} \frac{n}{2n^2 - \cos^2 n}$. Complete the boxes and blanks.

a. \sum $\frac{1}{2}$ $\frac{1}{2}$ will $\frac{1}{2}$ {converge, diverge}

b. Complete the box: We can use the Direct Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n}$ to validate our claim in part **a**.

c. Assuming the contents of the dashed box are same as the *n*th term of your series in part **b**, which choice is true?

Circle one and complete the box:

$$
i. \frac{n}{2n^2 - \cos^2 n} \leq \frac{1}{n} \qquad \frac{1}{n} \qquad \frac{1}{n} \qquad \frac{1}{n} \leq \frac{n}{2n^2 - \cos^2 n}
$$

d. Complete, assuming the series in tbe dashed box below is what you wrote in the box in part **b**.

 \blacksquare will because \blacksquare {converge, diverge} (Give a reason for your answer such as harmonic series, *p*-series with *p* > 1, -series with $p < 1$, geometric series, *n*th Term Test for Divergence)

5. Consider the series
$$
\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{6n^2 + n + 7}{n^5 + 2n}
$$
. Complete the boxes and blanks.
\na We can use the Limit Comparison Test with $b_n =$
\n
$$
\int_{0}^{\infty} \frac{6n^2 + n + 7}{n^5 + 2n}
$$
 will $\frac{6n^2 + n + 7}{n^5 + 2n}$ will $\frac{6n}{100}$.

b. Complete, assuming b_n is what you wrote in the box in part **a**.

 $\sum_{n=1}$ \sum_{a}^{∞} $\sum_{n=1}^{\infty} b_n$ will $\frac{1}{\{ \text{converge, diverge} \}}$ because $\frac{1}{\{ \text{Given a reason for your answer such as harmonic series, } p\text{-series with } p > 1, }$ The limit $\lim_{n\to\infty} \frac{a_n}{b}$ *n a b* $=$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ **6.** Consider the series $\sum_{n=1}^{\infty} a_n$ \sum_{a}^{∞} $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{5n^5 + 8n^2}{\sqrt{n^{12} + 8n^2}}$ $5n^5 + 8$ $\sum_{n=1}^{\infty} \sqrt{n^{12}} + 8$ $n^5 + 8n$ $n^{12} + 8n$ ∞ = + $\sum_{n=1}^{\infty} \frac{3n + 8n}{\sqrt{n^{12} + 8n^2}}$. Complete the boxes and blanks. *p*-series with *p* < 1, geometric series, *n*th Term Test for Divergence)

a. We can use the Limit Comparison Test with $b_n = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \text{show } \sum_{n=0}^{\infty} \frac{5n^5 + 8n^2}{\sqrt{12n^5}} \end{bmatrix}$

 $\frac{1}{4} \sqrt{n^{12} + 8n^2}$ $5n^5 + 8$ $\sum_{n=1}^{\infty} \sqrt{n^{12}} + 8$ $n^5 + 8n$ $n^{12} + 8n$ ∞ = + $\sum_{n=1}^{\infty} \frac{3n + 8n}{\sqrt{n^{12} + 8n^2}}$ will $\frac{1}{\{\text{converge, diverge}\}}$

b. Complete, assuming b_n is what you wrote in the box in part **a**.

b. Complete, assuming b_n is what you wrote in the box in part **a**.

The limit $\lim_{n\to\infty} \frac{a_n}{b_n}$ *n a b* = | .